Chebyshev’s Method on Projective Fluids

dc.contributor.authorSommer, Alexander
dc.contributor.authorSchwanecke, Ulrich
dc.contributor.authorSchoemer, Elmar
dc.contributor.editorSkala, Václav
dc.date.accessioned2020-07-24T07:47:11Z
dc.date.available2020-07-24T07:47:11Z
dc.date.issued2020
dc.description.abstract-translatedWe demonstrate the acceleration potential of the Chebyshev semi-iterative approach for fluid simulations in Projective Dynamics. The Chebyshev approach has been successfully tested for deformable bodies, where the dynamical system behaves relatively linearly, even though Projective Dynamics, in general, is fundamentally nonlinear. The results for more complex constraints, like fluids, with a particular nonlinear dynamical system, remained unknown so far. We follow a method describing particle-based fluids in Projective Dynamics while replacing the Conjugate Gradient solver with Chebyshev’s method. Our results show that Chebyshev’s method can be successfully applied to fluids and potentially other complex constraints to accelerate simulations.en
dc.format5 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of WSCG. 2020, vol. 28, no. 1-2, p. 132-136.en
dc.identifier.doihttps://doi.org/10.24132/JWSCG.2020.28.16
dc.identifier.issn1213-6972 (print)
dc.identifier.issn1213-6980 (CD-ROM)
dc.identifier.issn1213-6964 (on-line)
dc.identifier.urihttp://wscg.zcu.cz/WSCG2020/2020-J_WSCG-1-2.pdf
dc.identifier.urihttp://hdl.handle.net/11025/38434
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesJournal of WSCGen
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectsimulace tekutincs
dc.subjectsimulace založená na omezenícs
dc.subjectprojektivní dynamikacs
dc.subjectnelineární optimalizacecs
dc.subjectanimacecs
dc.subject.translatedfluid simulationen
dc.subject.translatedconstraint-based simulationen
dc.subject.translatedprojective dynamicsen
dc.subject.translatednonlinear optimizationen
dc.subject.translatedanimationen
dc.titleChebyshev’s Method on Projective Fluidsen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Sommer.pdf
Size:
4.1 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: