Global least squares solution for LTI system response

dc.contributor.authorRath, Gerhard
dc.contributor.authorHarker, Matthew
dc.contributor.editorPinker, Jiří
dc.date.accessioned2019-10-16T08:03:38Z
dc.date.available2019-10-16T08:03:38Z
dc.date.issued2017
dc.description.abstract-translatedLinear time invariant (LTI) systems are the most important method to describe dynamic systems for the purpose of modeling, simulation and design of controllers. Dynamic systems are a process developing over time, hence the solution is an initial value problem (IVP). Solvers for ordinary differential equations (ODE) are commonly used for evaluation. A new idea is to solve such systems directly after discretization based on an least-squares problem with equality constraints (LSE). The approach is demonstrated on a simple system with four state variables and a rank-deficient system matrix. A comparison with standard ODE solution shows the correctness of the solution, advantages are discussed.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citation2017 International Conference on Applied Electronics: Pilsen, 5th – 6th September 2017, Czech Republic, p.175-178.en
dc.identifier.isbn978–80–261–0641–8 (Print)
dc.identifier.isbn978–80–261–0642–5 (Online)
dc.identifier.issn1803–7232 (Print)
dc.identifier.issn1805–9597 (Online)
dc.identifier.urihttp://hdl.handle.net/11025/35434
dc.language.isoenen
dc.publisherZápadočeská univerzita v Plznics
dc.rights© Západočeská univerzita v Plznics
dc.rights.accessopenAccessen
dc.subjectmatematický modelcs
dc.subjectlineární systémycs
dc.subjectMATLABcs
dc.subjectpružinycs
dc.subjectpřenosové funkcecs
dc.subjectautomatizacecs
dc.subject.translatedmathematical modelen
dc.subject.translatedlinear systemsen
dc.subject.translatedMATLABen
dc.subject.translatedspringsen
dc.subject.translatedtransfer functionsen
dc.subject.translatedautomationen
dc.titleGlobal least squares solution for LTI system responseen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Rath.pdf
Size:
239.27 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: