Implementation of visual people counting algorithms in embedded systems

dc.contributor.authorRudolf, O.
dc.contributor.authorHecker, R.
dc.contributor.authorThißen, M.
dc.contributor.authorSillekens, L.
dc.contributor.authorPenner, I.
dc.contributor.authorSeyfarth, S.
dc.contributor.authorAkelbein, J.-P.
dc.contributor.authorHergenröther, E.
dc.contributor.editorSkala, Václav
dc.date.accessioned2025-07-30T08:54:07Z
dc.date.available2025-07-30T08:54:07Z
dc.date.issued2025
dc.description.abstract-translatedOptimising the efficiency of HVAC systems represents a significant opportunity to reduce energy consumption in buildings and mitigate greenhouse gas emissions. This research evaluates low-resolution computer vision algorithms for occupancy detection on resource-constrained embedded systems. Our evaluation focuses specifically on the feasibility of deploying advanced AI object detection models on low-cost hardware platforms (under =C10) with varying computational capabilities. We systematically compared 45 different pre-trained object detection models using the COCO dataset. Among the models evaluated, those with the YOLO backbone proved to be the most suitable for this task. Quantitative analysis showed that YOLOv5n achieved a favourable balance between accuracy (AP50 = 0.944; AP50-95 = 0.584), model size (2.6 MB in RKNN format) and inference time. Performance tests on three embedded platforms - ESP32-CAM (microcontroller), Raspberry Pi Zero 2 W and Luckfox Pico Mini A (single-board computer) - revealed significant differences in inference speed, with hardware-accelerated solutions up to 10,000 times faster than software-only implementations. We have verified real-world applicability using our own ceiling-mounted wide-angle camera dataset. Future work will focus on developing a full hardware prototype, optimising the training dataset with AI-generated synthetic data, and implementing sensor fusion with audio signals for a multimodal approach.en
dc.description.sponsorshipThe authors thank the Federal Ministry for Economic Affairs and Climate Action (BMWK, Germany) for financial support of this research project.
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.doihttp://www.doi.org/10.24132/CSRN.2025-4
dc.identifier.issn2464-4617 (Print)
dc.identifier.issn2464-4625 (online)
dc.identifier.urihttp://hdl.handle.net/11025/62210
dc.language.isoenen
dc.publisherVaclav Skala - UNION Agencyen
dc.rights© Vaclav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectdetekce obsazenostics
dc.subjectpočítačové viděnícs
dc.subjectYOLOcs
dc.subjectvestavěné systémycs
dc.subject.translatedoccupancy detectionen
dc.subject.translatedcomputer visionen
dc.subject.translatedYOLOen
dc.subject.translatedembedded systemsen
dc.titleImplementation of visual people counting algorithms in embedded systemsen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
dc.type.versionpublishedVersionen
local.files.count1*
local.files.size2267404*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
A59.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: