Genetic algorithm with prediction of unsuitable variants based on existing solutions

dc.contributor.authorMach, František
dc.contributor.authorKarban, Pavel
dc.contributor.authorDoležel, Ivo
dc.date.accessioned2017-03-30T05:47:27Z
dc.date.available2017-03-30T05:47:27Z
dc.date.issued2015
dc.description.abstract-translatedA modified genetic algorithm is proposed for optimization of the systems of mathematical models described by partial differential equations. This algorithm makes use of automatic prediction of problematic variants from technical and also numerical viewpoints. The algorithm is implemented in the framework OptiLab that represents a part of application Agros2D developed by the authors.en
dc.format1 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationCPEE – AMTEE 2015: Joint conference Computational Problems of Electrical Engineering and Advanced Methods of the Theory of Electrical Engineering: 6th – 8th September 2015 Třebíč, Czech Republic, p. III-1.en
dc.identifier.isbn978-80-261-0527-5
dc.identifier.urihttp://hdl.handle.net/11025/25738
dc.language.isoenen
dc.publisherZápadočeská univerzita v Plznics
dc.relation.ispartofseriesCPEE – AMTEE 2013: Joint conference Computational Problems of Electrical Engineering and Advanced Methods of the Theory of Electrical Engineeringen
dc.rights© University of West Bohemiaen
dc.rights.accessopenAccessen
dc.subjectgenetický algoritmuscs
dc.subjectomezená optimalizacecs
dc.subjectoptimalizace tvarucs
dc.subject.translatedgenetic algorithmen
dc.subject.translatedconstrained optimizationen
dc.subject.translatedshape optimizationen
dc.titleGenetic algorithm with prediction of unsuitable variants based on existing solutionsen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Mach.pdf
Size:
120.55 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: