De-noising and recovering images based on Kernel PCA theory

dc.contributor.authorXi, Pengcheng
dc.contributor.authorXu, Tao
dc.contributor.editorSkala, Václav
dc.date.accessioned2013-01-25T12:18:54Z
dc.date.available2013-01-25T12:18:54Z
dc.date.issued2004
dc.description.abstractPrincipal Component Analysis (PCA) is a basis transformation to diagonalize an estimate of the covariance matrix of input data and, the new coordinates in the Eigenvector basis are called principal components. Since Kernel PCA is just a PCA in feature space F, the projection of an image in input space can be reconstructed from its principal components in feature space. This enables us to perform several applications concerning de-noising and recovering images. Because of the superiority of Kernel PCA over linear PCA, we also get satisfactory effects of de-noising images using Kernel PCA.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG '2004: Posters: The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 2.-6. February 2004, Plzen, p. 197-200.en
dc.identifier.isbn80-903100-6-0
dc.identifier.urihttp://wscg.zcu.cz/wscg2004/Papers_2004_Poster/J07.pdf
dc.identifier.urihttp://hdl.handle.net/11025/974
dc.language.isoenen
dc.publisherUNION Agencyen
dc.relation.ispartofseriesWSCG '2004: Postersen
dc.rights© UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectkernelová analýza hlavních komponentcs
dc.subject.translatedkernel principal component analysisen
dc.titleDe-noising and recovering images based on Kernel PCA theoryen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
J07.pdf
Size:
257.18 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: