Towards automatic measure of similarity for use in unit selection

dc.contributor.authorTihelka, Daniel
dc.date.accessioned2015-12-11T13:17:11Z
dc.date.available2015-12-11T13:17:11Z
dc.date.issued2008
dc.description.abstract-translatedThe paper focuses on the unit selection approach to speech synthesis, discussing drawbacks mainly related to the current handling of target features that basically results in the need of huge corpora. In the paper there are outlined possible solutions based on measuring (dis)similarity among prosodic patterns. In the initial experiment, trying to verify the feasibility of the proposed solution, the (dis)similarity of acoustic signal measured by different techniques is correlated to perceived similarity estimate obtained from a large-scale listening test.en
dc.format6 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationTIHELKA, Daniel. Towards automatic measure of similarity for use in unit selection. In: Proceedings of the 9th international conference on signal processing, ICSP '08, 26.10.2008 - 26.11.2008. 3rd ed. Beijing: IEEE Press, 2008, p. 637-642. ISBN 978-1-4244-2178-7.en
dc.identifier.isbn978-1-4244-2178-7
dc.identifier.urihttp://www.kky.zcu.cz/cs/publications/TihelkaD_2008_TowardsAutomatic
dc.identifier.urihttp://hdl.handle.net/11025/16975
dc.language.isoenen
dc.publisherIEEE Pressen
dc.rights© Daniel Tihelkacs
dc.rights.accessopenAccessen
dc.subjectsyntéza řečics
dc.subjectprozodické vzorycs
dc.subjectpodobnostcs
dc.subject.translatedspeech synthesisen
dc.subject.translatedprosodic patternsen
dc.subject.translatedsimilarityen
dc.titleTowards automatic measure of similarity for use in unit selectionen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
TihelkaD_2008_TowardsAutomatic.pdf
Size:
97.55 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections