CNN Approaches for Dorsal Hand Vein Based Identification

dc.contributor.authorLefkovits, Szidónia
dc.contributor.authorLefkovits, László
dc.contributor.authorSzilágyi, László
dc.contributor.editorSkala, Václav
dc.date.accessioned2019-10-23T06:52:51Z
dc.date.available2019-10-23T06:52:51Z
dc.date.issued2019
dc.description.abstract-translatedIn this paper we present a dorsal hand vein recognition method based on convolutional neural networks (CNN). We implemented and compared two CNNs trained from end-to-end to the most important state-of-the-art deep learning architectures (AlexNet, VGG, ResNet and SqueezeNet). We applied the transfer learning and finetuning techniques for the purpose of dorsal hand vein-based identification. The experiments carried out studied the accuracy and training behaviour of these network architectures. The system was trained and evaluated on the best-known database in this field, the NCUT, which contains low resolution, low contrast images. Therefore, different pre-processing steps were required, leading us to investigate the influence of a series of image quality enhancement methods such as Gaussian smoothing, inhomogeneity correction, contrast limited adaptive histogram equalization, ordinal image encoding, and coarse vein segmentation based on geometricalconsiderations. The results show high recognition accuracy for almost every such CNN-based setup.en
dc.format10 s.cs
dc.format.mimetypeapplication/odt
dc.identifier.citationWSCG 2019: Short and Poster papers proceedings: 27. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p.51-60.en
dc.identifier.doihttps://doi.org/10.24132/CSRN.2019.2902.2.7
dc.identifier.isbn978-80-86943-38-1 (CD/-ROM)
dc.identifier.issn2464–4617 (print)
dc.identifier.issn2464-4625 (CD/DVD)
dc.identifier.urihttp://hdl.handle.net/11025/35634
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectbiometrická identifikacecs
dc.subjectrozpoznávání hřbetních žil rukycs
dc.subjectarchitektury CNNcs
dc.subjectkonvoluční neuronové sítěcs
dc.subjectpřenos učenícs
dc.subject.translatedbiometric identificationen
dc.subject.translateddorsal hand vein recognitionen
dc.subject.translatedCNN architecturesen
dc.subject.translatedconvolutional neural networksen
dc.subject.translatedtransfer learningen
dc.titleCNN Approaches for Dorsal Hand Vein Based Identificationen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Lefkovits.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: