SEL-CIE: Self-Supervised Learning Framework for CIE-XYZ Reconstruction from Non-Linear sRGB Images

dc.contributor.authorBarzel, Shir
dc.contributor.authorSalhov, Moshe
dc.contributor.authorLindenbaum, Ofir
dc.contributor.authorAverbuch, Amir
dc.contributor.editorSkala, Václav
dc.date.accessioned2024-07-24T19:16:58Z
dc.date.available2024-07-24T19:16:58Z
dc.date.issued2024
dc.description.abstract-translatedModern cameras typically offer two types of image states: a minimally processed linear raw RGB image repre senting the raw sensor data, and a highly-processed non-linear image state, such as the sRGB state. The CIE-XYZ color space is a device-independent linear space used as part of the camera pipeline and can be helpful for com puter vision tasks, such as image deblurring, dehazing, and color recognition tasks in medical applications, where color accuracy is important. However, images are usually saved in non-linear states, and achieving CIE-XYZ color images using conventional methods is not always possible. To tackle this issue, classical methodologies have been developed that focus on reversing the acquisition pipeline. More recently, supervised learning has been employed, using paired CIE-XYZ and sRGB representations of identical images. However, obtaining a large-scale dataset of CIE-XYZ and sRGB pairs can be challenging. To overcome this limitation and mitigate the reliance on large amounts of paired data, self-supervised learning (SSL) can be utilized as a substitute for relying solely on paired data. This paper proposes a framework for using SSL methods alongside paired data to reconstruct CIE-XYZ images and re-render sRGB images, outperforming existing approaches. The proposed framework is applied to the sRGB2XYZ dataseten
dc.format10 scs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG 2024: full papers proceedings: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 13-22.en
dc.identifier.doihttps://doi.org/10.24132/CSRN.3401.3
dc.identifier.issn2464–4625 (online)
dc.identifier.issn2464–4617 (print)
dc.identifier.urihttp://hdl.handle.net/11025/57373
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.rights© Václav Skala - UNION Agencycs_CZ
dc.rights© Václav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectbarevný prostor CIE-XYZcs
dc.subjectsRGBcs
dc.subjectrekonstrukce obrazucs
dc.subjectsamokontrolované učenícs
dc.subjectnezpracovaný obrazcs
dc.subjectMacbeth ColorCheckercs
dc.subject.translatedCIE-XYZ Color Spaceen
dc.subject.translatedsRGBen
dc.subject.translatedimage reconstructionen
dc.subject.translatedSelf-Supervised Learningen
dc.subject.translatedraw imageen
dc.subject.translatedMacbeth ColorCheckeren
dc.titleSEL-CIE: Self-Supervised Learning Framework for CIE-XYZ Reconstruction from Non-Linear sRGB Imagesen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
A13-2024.pdf
Size:
6.2 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: