Geo-spatial data viewer: from familiar land-covering to arbitrary distorted geo-spatial quadtree maps

dc.contributor.authorSips, Mike
dc.contributor.authorKeim, Daniel A.
dc.contributor.authorPanse, Christian
dc.contributor.authorSchneidewind, Jörn
dc.contributor.editorSkala, Václav
dc.date.accessioned2013-04-19T10:36:26Z
dc.date.available2013-04-19T10:36:26Z
dc.date.issued2004
dc.description.abstractIn many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. A noteworthy trend is the increasing size of data sets in common use, such as records of business transactions, environmental data and census demographics. These data sets often contain millions of records, or even far more. This situation creates new challenges in coping with scale. In this paper we propose a novel pixel-oriented visual data mining approach for large spatial datasets. It combines a quadtree based distortion of map regions and a local reposition of pixels within these map regions to avoid overlap in the display. Experiments shows that it produces visualizations of large data sets for the discovery of local correlations, and is practical for exploring geography-related statistical information in a variety of applications including population demographics, epidemiology, and marketing.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of WSCG. 2004, vol. 12, no. 1-3, p. 213-220.en
dc.identifier.issn1213-6972
dc.identifier.urihttp://wscg.zcu.cz/wscg2004/Papers_2004_Full/H11.pdf
dc.identifier.urihttp://hdl.handle.net/11025/1718
dc.language.isoenen
dc.publisherUNION Agencycs
dc.relation.ispartofseriesJournal of WSCGen
dc.rights© UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectgeografické informační systémycs
dc.subjectprostorová datacs
dc.subjectdata miningcs
dc.subjectvizualizace datcs
dc.subject.translatedgeographical information systemsen
dc.subject.translatedspatial dataen
dc.subject.translateddata miningen
dc.subject.translateddata visualizationen
dc.titleGeo-spatial data viewer: from familiar land-covering to arbitrary distorted geo-spatial quadtree mapsen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
H11.pdf
Size:
13.82 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: