Video summarization based on local features

dc.contributor.authorMassaoudi, Mohammed
dc.contributor.authorBahroun, Sahbi
dc.contributor.authorZagrouba, Ezzeddine
dc.contributor.editorSkala, Václav
dc.date.accessioned2018-04-16T08:28:57Z
dc.date.available2018-04-16T08:28:57Z
dc.date.issued2017
dc.description.abstractKeyframe extraction process consists on presenting an abstract of the entire video with the most representative frames. It is one of the basic procedures relating to video retrieval and summary. This paper present a novel method for keyframe extraction based on SURF local features. First, we select a group of candidate frames from a video shot using a leap extraction technique. Then, SURF is used to detect and describe local features on the candidate frames. After that, we analyzed those features to eliminate near duplicate keyframes, helping to keep a compact set, using FLANN method. We developed a comparative study to evaluate our method with three state of the art approaches based on local features. The results show that our method overcomes those approaches.en
dc.format5 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG 2017: poster papers proceedings: 25th International Conference in Central Europe on Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 13-17.en
dc.identifier.isbn978-80-86943-46-6
dc.identifier.issn2464-4617
dc.identifier.uriwscg.zcu.cz/WSCG2017/!!_CSRN-2703.pdf
dc.identifier.urihttp://hdl.handle.net/11025/29606
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG 2017: poster papers proceedingsen
dc.rights© Václav Skala - Union Agencycs
dc.rights.accessopenAccessen
dc.subjectshrnutí videacs
dc.subjectextrakce klíčových snímkůcs
dc.subjectzájmové bodycs
dc.subjectSURFcs
dc.subjectFLANNcs
dc.subject.translatedvideo summarizationen
dc.subject.translatedkeyframe extractionen
dc.subject.translatedinterest pointsen
dc.subject.translatedSURFen
dc.subject.translatedFLANNen
dc.titleVideo summarization based on local featuresen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Massaoudi.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: