Real-time voxel rendering algorithm based on screen space billboard voxel buffer with sparse lookup textures
Date issued
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Václav Skala - UNION Agency
Abstract
In this paper, we present a novel approach to efficient real-time rendering of numerous high-resolution voxelized
objects. We present a voxel rendering algorithm based on triangle rasterization pipeline with screen space rendering
computational complexity. In order to limit the number of vertex shader invocations, voxel filtering algorithm
with fixed size voxel data buffer was developed. Voxelized objects are represented by sparse voxel octree (SVO)
structure. Using sparse texture available in modern graphics APIs, we create a 3D lookup table for voxel ids.
Voxel filtering algorithm is based on 3D sparse texture ray marching approach. Screen Space Billboard Voxel
Buffer is filled by voxels from visible voxels point cloud. Thanks to using 3D sparse textures, we are able to store
high-resolution objects in VRAM memory. Moreover, sparse texture mipmaps can be used to control object level
of detail (LOD). The geometry of a voxelized object is represented by a collection of points extracted from object
SVO. Each point is defined by position, normal vector and texture coordinates. We also show how to take advantage
of programmable geometry shaders in order to store voxel objects with extremely low memory requirements and to
perform real-time visualization. Moreover, geometry shaders are used to generate billboard quads from the point
cloud and to perform fast face culling. As a result, we obtained comparable or even better performance results
in comparison to SVO ray tracing approach. The number of rendered voxels is limited to defined Screen Space
Billboard Voxel Buffer resolution. Last but not least, thanks to graphics card adapter support, developed algorithm
can be easily integrated with any graphics engine using triangle rasterization pipeline.
Description
Subject(s)
počítačová grafika, vykreslování voxelů, řídké voxelové oktávy, řídká textura, bodová mračna, geometrický shader, billboarding
Citation
WSCG 2016: full papers proceedings: 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS Association, p. 27-36.