Inpainted image quality assessment based on machine learning

dc.contributor.authorVoronin, V.
dc.contributor.authorMarchuk, V.
dc.contributor.authorSemenishchev, E.
dc.contributor.authorMaslennikov, S.
dc.contributor.authorSvirin, I.
dc.contributor.editorSkala, Václav
dc.date.accessioned2018-05-17T08:29:38Z
dc.date.available2018-05-17T08:29:38Z
dc.date.issued2015
dc.description.abstractIn many cases inpainting methods introduce a blur in sharp transitions in image and image contours in the recovery of large areas with missing pixels and often fail to recover curvy boundary edges. Quantitative metrics of inpainting results currently do not exist and researchers use human comparisons to evaluate their methodologies and techniques. Most objective quality assessment methods rely on a reference image, which is often not available in inpainting applications. This paper focuses on a machine learning approach for noreference visual quality assessment for image inpainting. Our method is based on observation that Local Binary Patterns well describe local structural information of the image. We use a support vector regression learned on human observer images to predict the perceived quality of inpainted images. We demonstrate how our predicted quality value correlates with qualitative opinion in a human observer study.en
dc.format6 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG '2015: short communications proceedings: The 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2015 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic8-12 June 2015, p. 167-172.en
dc.identifier.isbn978-80-86943-66-4
dc.identifier.issn2464-4617
dc.identifier.uriwscg.zcu.cz/WSCG2015/CSRN-2502.pdf
dc.identifier.urihttp://hdl.handle.net/11025/29679
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG '2015: short communications proceedingsen
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectretušovánícs
dc.subjecthodnocení kvalitycs
dc.subjectmetrikycs
dc.subjectvizuální výstupekcs
dc.subjectstrojové učenícs
dc.subject.translatedinpaintingen
dc.subject.translatedquality assessmenten
dc.subject.translatedmetricsen
dc.subject.translatedvisual salienceen
dc.subject.translatedmachine learningen
dc.titleInpainted image quality assessment based on machine learningen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Voronin.pdf
Size:
831.06 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: