HCTSketch: Hybrid CNN-Transformer Approach for Stroke Segmentation in Sketches

dc.contributor.authorSvirhunenko, Yana
dc.contributor.authorTytarchuk, Pavlo
dc.contributor.authorHolovko, Yevhenii
dc.contributor.authorTereschenko, Yaroslav
dc.contributor.editorSkala, Václav
dc.date.accessioned2025-07-30T09:54:12Z
dc.date.available2025-07-30T09:54:12Z
dc.date.issued2025
dc.description.abstract-translatedStroke segmentation is a crucial task in computer vision, particularly for analyzing sketches, handwritten drawings, and digital art restoration. Traditional methods, such as contour-based and clustering approaches, often struggle with noise, limited adaptability, and lack of deep structural understanding. Modern deep learning approaches, including U-Net and Mask R-CNN, focus primarily on object segmentation rather than analyzing individual strokes. In this work, we propose a hybrid approach combining Convolutional Neural Networks (CNN) and Vision Transformer (ViT) to effectively segment strokes while preserving both local features and global relationships. Our approach leverages data augmentation techniques to enhance generalization and improve segmentation performance. When evaluated on the QuickDraw dataset and our own dataset, our method achieves high accuracy, with a sketch classification accuracy of 98.81% and a stroke segmentation accuracy of 94.62%. Despite challenges,such as the wide variety of drawing styles and the uneven representation of different stroke types in the datasets, our method demonstrates superior robustness while maintaining high computational efficiency. The improved stroke segmentation capabilities could enable more sophisticated sketch understanding systems and enhance human-computer interaction in creative applications.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.doihttp://www.doi.org/10.24132/CSRN.2025-18
dc.identifier.issn2464-4617 (Print)
dc.identifier.issn2464-4625 (online)
dc.identifier.urihttp://hdl.handle.net/11025/62224
dc.language.isoenen
dc.publisherVaclav Skala - UNION Agencyen
dc.rights© Vaclav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectsegmentace tahůcs
dc.subjecttransformátor viděnícs
dc.subjectCNNcs
dc.subjecthluboké učenícs
dc.subjectrozpoznávání skiccs
dc.subjectaugmentace datcs
dc.subject.translatedstroke segmentationen
dc.subject.translatedvision transformeren
dc.subject.translatedCNNen
dc.subject.translateddeep learningen
dc.subject.translatedsketch recognitionen
dc.subject.translateddata augmentationen
dc.titleHCTSketch: Hybrid CNN-Transformer Approach for Stroke Segmentation in Sketchesen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
dc.type.versionpublishedVersionen
local.files.count1*
local.files.size2057775*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
C03.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: