Compression artifacts removal using convolutional neural networks

dc.contributor.authorSvoboda, Pavel
dc.contributor.authorHradiš, Michal
dc.contributor.authorBařina, David
dc.contributor.authorZemčík, Pavel
dc.contributor.editorSkala, Václav
dc.date.accessioned2016-07-25T13:06:20Z
dc.date.available2016-07-25T13:06:20Z
dc.date.issued2016
dc.description.abstract-translatedThis paper shows that it is possible to train large and deep convolutional neural networks (CNN) for JPEG compression artifacts reduction, and that such networks can provide significantly better reconstruction quality compared to previously used smaller networks as well as to any other state-of-the-art methods. We were able to train networks with 8 layers in a single step and in relatively short time by combining residual learning, skip architecture, and symmetric weight initialization. We provide further insights into convolution networks for JPEG artifact reduction by evaluating three different objectives, generalization with respect to training dataset size, and generalization with respect to JPEG quality level.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of WSCG. 2016, vol. 24, no. 2, p. 63-72.en
dc.identifier.issn1213-6972 (print)
dc.identifier.issn1213-6980 (CD-ROM)
dc.identifier.issn1213-6964 (on-line)
dc.identifier.urihttp://wscg.zcu.cz/WSCG2016/!_2016_Journal_WSCG-No-2.pdf
dc.identifier.urihttp://hdl.handle.net/11025/21649
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesJournal of WSCGen
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjecthluboké učenícs
dc.subjectkonvoluční neuronová síťcs
dc.subjectJPEGcs
dc.subject.translateddeep learningen
dc.subject.translatedconvolutional neural networksen
dc.subject.translatedJPEGen
dc.titleCompression artifacts removal using convolutional neural networksen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Svoboda.pdf
Size:
2.61 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: