Evaluation of space partitioning data structures for nonlinear mapping
Date issued
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Václav Skala - UNION Agency
Abstract
Nonlinear mapping (Sammon mapping) is a nonlinear dimensionality reduction technique operating on the data
structure preserving principle. Several possible space partitioning data structures (vp-trees, kd-trees and cluster
trees) are applied in the paper to improve the efficiency of the nonlinear mapping algorithm. At the first step
specified structures partition the input multidimensional space, at the second step space partitioning structure is
used to build up the list of reference nodes used to approximate calculations. The further steps perform
initialization and iterative refinement of the low-dimensional coordinates of objects in the output space using
created lists of reference nodes. Analyzed space partitioning data structures are evaluated in terms of the data
mapping error and runtime. The experiments are carried out on the well-known datasets.
Description
Subject(s)
snížení dimenze, nelineární mapování, Sammonovo mapování, multidimenzionální škálování, MDS, prostorové dělení, prostorová dekompozice, vp strom, kd strom, klastrový strom
Citation
WSCG 2015: full papers proceedings: 23rd International Conference in Central Europeon Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 109-118.