Evaluation of space partitioning data structures for nonlinear mapping

Date issued

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Václav Skala - UNION Agency

Abstract

Nonlinear mapping (Sammon mapping) is a nonlinear dimensionality reduction technique operating on the data structure preserving principle. Several possible space partitioning data structures (vp-trees, kd-trees and cluster trees) are applied in the paper to improve the efficiency of the nonlinear mapping algorithm. At the first step specified structures partition the input multidimensional space, at the second step space partitioning structure is used to build up the list of reference nodes used to approximate calculations. The further steps perform initialization and iterative refinement of the low-dimensional coordinates of objects in the output space using created lists of reference nodes. Analyzed space partitioning data structures are evaluated in terms of the data mapping error and runtime. The experiments are carried out on the well-known datasets.

Description

Subject(s)

snížení dimenze, nelineární mapování, Sammonovo mapování, multidimenzionální škálování, MDS, prostorové dělení, prostorová dekompozice, vp strom, kd strom, klastrový strom

Citation

WSCG 2015: full papers proceedings: 23rd International Conference in Central Europeon Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 109-118.
OPEN License Selector