Data mining methods for prediction of air pollution

dc.contributor.authorSiwek, Krzysztof
dc.contributor.authorOsowski, Stanislaw
dc.date.accessioned2014-07-04T11:08:23Z
dc.date.available2014-07-04T11:08:23Z
dc.date.issued2013
dc.description.abstractThe paper discusses the methods of data mining for prediction of air pollution. Two problems in such prediction are important: the generation and selection of the prognostic features, and final prognosis of the pollution level for the next day on the basis of the data of the previous day. In this paper we analyze and compare two methods of feature selection. One applies the genetic algorithm, and the second the linear method of stepwise fit. On the basis of such analysis we are able to select the most important features influencing the prediction. As a mathematical tool for final prediction we apply the neural networks. Three different solutions will be compared: the multilayer perceptron (MLP), radial basis function (RBF) network and support vector machine (SVM).en
dc.format2 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationISTET 2013: International Symposiumon Theoretical Electrical Engineering: 24th – 26th June 2013: Pilsen, Czech Republic, p. III-13-III-14.en
dc.identifier.isbn978-80-261-0246-5
dc.identifier.urihttp://hdl.handle.net/11025/11487
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.relation.ispartofseriesISTET: International Symposium on Theoretical Electrical Engineeringen
dc.rights© University of West Bohemiaen
dc.rights.accessopenAccessen
dc.subjectdata miningcs
dc.subjectznečištění vzduchucs
dc.subjectprognózování časových řadcs
dc.subjectvýběr znakůcs
dc.subjectneuronové sítěcs
dc.subjectvýpočetní inteligencecs
dc.subject.translateddata miningen
dc.subject.translatedair pollutionen
dc.subject.translatedtime series forecastingen
dc.subject.translatedfeature selectionen
dc.subject.translatedneural networksen
dc.subject.translatedcomputational intelligenceen
dc.titleData mining methods for prediction of air pollutionen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Siwek.pdf
Size:
82.98 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: