Adaptive Novelty Detection with Generalized Extreme Value Distribution

dc.contributor.authorVrba, Jan
dc.contributor.editorPinker, Jiří
dc.date.accessioned2019-10-18T05:34:55Z
dc.date.available2019-10-18T05:34:55Z
dc.date.issued2018
dc.description.abstract-translatedThis paper introduces the new adaptive novelty detection method. The proposed method is using generalized extreme value distribution to evaluate the absolute value of adaptive system weight increments in time. The detection of novelty is threshold-based and the threshold ζ corresponds to the value of joint probability density function. Performance of the proposed algorithm is shown on artificial data. For comparison also results of Learning Entropy algorithm are shown, as this algorithm also evaluates the increments of adaptive weights.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citation2018 International Conference on Applied Electronics: Pilsen, 11th – 12th September 2018, Czech Republic, 169-172.en
dc.identifier.isbn978–80–261–0721–7
dc.identifier.issn1803–7232
dc.identifier.urihttp://hdl.handle.net/11025/35495
dc.language.isoenen
dc.publisherZápadočeská univerzita v Plznics
dc.rights© Západočeská univerzita v Plznics
dc.rights.accessopenAccessen
dc.subjectzpracování signálucs
dc.subjectadaptivní systémycs
dc.subjectadaptivní algoritmycs
dc.subjectdetekce změncs
dc.subjectzobecněné rozdělení extrémních hodnotcs
dc.subject.translatedsignal processingen
dc.subject.translatedadaptive systemsen
dc.subject.translatedadaptive algorithmsen
dc.subject.translatednovelty detectionen
dc.subject.translatedgeneralized extreme value distributionen
dc.titleAdaptive Novelty Detection with Generalized Extreme Value Distributionen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Vrba.pdf
Size:
851.47 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: