Towards user-friendly and high-performance analytics with big data historian
| dc.contributor.author | Possolt, Martin | |
| dc.contributor.author | Jirkovský, Václav | |
| dc.contributor.author | Obitko, Marek | |
| dc.contributor.editor | Steinberger, Josef | |
| dc.contributor.editor | Zíma, Martin | |
| dc.contributor.editor | Fiala, Dalibor | |
| dc.contributor.editor | Dostal, Martin | |
| dc.contributor.editor | Nykl, Michal | |
| dc.date.accessioned | 2017-10-09T08:26:53Z | |
| dc.date.available | 2017-10-09T08:26:53Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract-translated | We are witnessing the trend of increasing data production in various domains including industrial automation. This trend requires means for data capturing, storing, and analyzing. Furthermore, a versatile data model is needed to enable easy knowledge representation as well as change management. In this paper, we utilize Semantic Big Data Historian, which can cope with previously mentioned requirements, for a demonstration of promising analytic approach combining Big Data methods and a user-friendly modular platform. The ap-proach is demonstrated on data from a hydroelectric power station. The station has been dealing with the interesting problem of prediction when to momentari-ly stop their turbine to increase generated power after the restart. In this contri-bution, we discuss several approaches how to process and analyze data from power station sensors for achieving the best results. | en |
| dc.format | 4 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | STEINBERGER, Josef ed.; ZÍMA, Martin ed.; FIALA, Dalibor ed.; DOSTAL, Martin ed.; NYKL, Michal ed. Data a znalosti 2017: sborník konference, Plzeň, Hotel Angelo 5. - 6. října 2017. 1. vyd. Plzeň: Západočeská univerzita v Plzni, 2017, s. 27-30. ISBN 978-80-261-0720-0. | cs |
| dc.identifier.isbn | 978-80-261-0720-0 | |
| dc.identifier.uri | http://hdl.handle.net/11025/26330 | |
| dc.language.iso | en | en |
| dc.publisher | Západočeská univerzita v Plzni | cs |
| dc.rights | © Západočeská univerzita v Plzni | cs |
| dc.rights.access | openAccess | en |
| dc.subject | vícevrstvý perceptron | cs |
| dc.subject | velká data | cs |
| dc.subject | ontologie | cs |
| dc.subject | vodní elektrárna | cs |
| dc.subject.translated | multilayer perceptron | en |
| dc.subject.translated | big data | en |
| dc.subject.translated | ontology | en |
| dc.subject.translated | hydroelectric power station | en |
| dc.title | Towards user-friendly and high-performance analytics with big data historian | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- Possolt.pdf
- Size:
- 423.17 KB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: