Towards user-friendly and high-performance analytics with big data historian

dc.contributor.authorPossolt, Martin
dc.contributor.authorJirkovský, Václav
dc.contributor.authorObitko, Marek
dc.contributor.editorSteinberger, Josef
dc.contributor.editorZíma, Martin
dc.contributor.editorFiala, Dalibor
dc.contributor.editorDostal, Martin
dc.contributor.editorNykl, Michal
dc.date.accessioned2017-10-09T08:26:53Z
dc.date.available2017-10-09T08:26:53Z
dc.date.issued2017
dc.description.abstract-translatedWe are witnessing the trend of increasing data production in various domains including industrial automation. This trend requires means for data capturing, storing, and analyzing. Furthermore, a versatile data model is needed to enable easy knowledge representation as well as change management. In this paper, we utilize Semantic Big Data Historian, which can cope with previously mentioned requirements, for a demonstration of promising analytic approach combining Big Data methods and a user-friendly modular platform. The ap-proach is demonstrated on data from a hydroelectric power station. The station has been dealing with the interesting problem of prediction when to momentari-ly stop their turbine to increase generated power after the restart. In this contri-bution, we discuss several approaches how to process and analyze data from power station sensors for achieving the best results.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationSTEINBERGER, Josef ed.; ZÍMA, Martin ed.; FIALA, Dalibor ed.; DOSTAL, Martin ed.; NYKL, Michal ed. Data a znalosti 2017: sborník konference, Plzeň, Hotel Angelo 5. - 6. října 2017. 1. vyd. Plzeň: Západočeská univerzita v Plzni, 2017, s. 27-30. ISBN 978-80-261-0720-0.cs
dc.identifier.isbn978-80-261-0720-0
dc.identifier.urihttp://hdl.handle.net/11025/26330
dc.language.isoenen
dc.publisherZápadočeská univerzita v Plznics
dc.rights© Západočeská univerzita v Plznics
dc.rights.accessopenAccessen
dc.subjectvícevrstvý perceptroncs
dc.subjectvelká datacs
dc.subjectontologiecs
dc.subjectvodní elektrárnacs
dc.subject.translatedmultilayer perceptronen
dc.subject.translatedbig dataen
dc.subject.translatedontologyen
dc.subject.translatedhydroelectric power stationen
dc.titleTowards user-friendly and high-performance analytics with big data historianen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Possolt.pdf
Size:
423.17 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: