Prediction of steady-state flow in a 3D domain using a convolutional neural network

dc.contributor.authorBublík, O.
dc.contributor.authorHeidler, V.
dc.contributor.authorVimmr, J.
dc.contributor.editorAdámek, Vítězslav
dc.contributor.editorJonášová, Alena
dc.contributor.editorPlánička, Stanislav
dc.date.accessioned2025-11-30T09:45:18Z
dc.date.available2025-11-30T09:45:18Z
dc.date.issued2025
dc.description.sponsorshipThis research is supported by project ”Investigation of 3D flow structures and their effects on aeroelastic stability of turbine-blade cascades using experiment and deep learning approach” GACR 24-12144S of the Grant Agency of the Czech Republic.en
dc.format2 s.cs
dc.format.mimetypeapplication/pdf
dc.format.versionpublishedVersionen
dc.identifier.isbn978-80-261-1254-9
dc.identifier.urihttp://hdl.handle.net/11025/64183
dc.language.isoenen
dc.publisherUniversity of West Bohemia in Pilsenen
dc.rights© University of West Bohemia in Pilsenen
dc.rights.accessopenAccessen
dc.subjectkonvoluční neuronová síťcs
dc.subject3D doménacs
dc.subjecttestcs
dc.subject.translatedconvolutional neural networken
dc.subject.translated3D domainen
dc.subject.translatedtesten
dc.titlePrediction of steady-state flow in a 3D domain using a convolutional neural networken
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
local.files.count2*
local.files.size843004*
local.has.filesyes*

Files

Original bundle
Showing 1 - 2 out of 2 results
No Thumbnail Available
Name:
CM2025_Conference_Proceedings-22-23.pdf
Size:
305.66 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
CM2025_Conference_Proceedings-uvod.pdf
Size:
517.58 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: