Dynamic Sensor Matching for Parallel Point Cloud Data Acquisition
| dc.contributor.author | Müller, Simone | |
| dc.contributor.author | Kranzlmüller, Dieter | |
| dc.contributor.editor | Skala, Václav | |
| dc.date.accessioned | 2021-08-31T05:38:35Z | |
| dc.date.available | 2021-08-31T05:38:35Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract-translated | Based on depth perception of individual stereo cameras, spatial structures can be derived as point clouds. Thequality of such three-dimensional data is technically restricted by sensor limitations, latency of recording, andinsufficient object reconstructions caused by surface illustration. Additionally external physical effects likelighting conditions, material properties, and reflections can lead to deviations between real and virtual objectperception. Such physical influences can be seen in rendered point clouds as geometrical imaging errors onsurfaces and edges. We propose the simultaneous use of multiple and dynamically arranged cameras. Theincreased information density leads to more details in surrounding detection and object illustration. During apre-processing phase the collected data are merged and prepared. Subsequently, a logical analysis part examinesand allocates the captured images to three-dimensional space. For this purpose, it is necessary to create a newmetadata set consisting of image and localisation data. The post-processing reworks and matches the locallyassigned images. As a result, the dynamic moving images become comparable so that a more accurate point cloudcan be generated. For evaluation and better comparability we decided to use synthetically generated data sets. Ourapproach builds the foundation for dynamic and real-time based generation of digital twins with the aid of realsensor data. | en |
| dc.format | 10 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | WSCG 2021: full papers proceedings: 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 21-30. | en |
| dc.identifier.doi | https://doi.org/10.24132/CSRN.2021.3101.3 | |
| dc.identifier.isbn | 978-80-86943-34-3 | |
| dc.identifier.issn | 2464-4617 | |
| dc.identifier.issn | 2464–4625(CD/DVD) | |
| dc.identifier.uri | http://hdl.handle.net/11025/45006 | |
| dc.language.iso | en | en |
| dc.publisher | Václav Skala - UNION Agency | cs |
| dc.rights | © Václav Skala - UNION Agency | cs |
| dc.rights.access | openAccess | en |
| dc.subject | vícesenzorový | cs |
| dc.subject | dynamické párování | cs |
| dc.subject | stereoskopie | cs |
| dc.subject | mračno bodů | cs |
| dc.subject | reálný čas | cs |
| dc.subject | získávání dat | cs |
| dc.subject | počítačové vidění | cs |
| dc.subject.translated | multi-sensor | en |
| dc.subject.translated | dynamic matching | en |
| dc.subject.translated | stereoscopy | en |
| dc.subject.translated | point cloud | en |
| dc.subject.translated | real-time | en |
| dc.subject.translated | data acquisition | en |
| dc.subject.translated | computer vision | en |
| dc.title | Dynamic Sensor Matching for Parallel Point Cloud Data Acquisition | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- H53.pdf
- Size:
- 4.01 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: