Fast Calculation of the Corona Discharge Ignition Voltage Using the Nelder–Mead Optimization

dc.contributor.authorZmeko, Filip
dc.contributor.authorMüllerová, Eva
dc.contributor.authorMartínek, Petr
dc.date.accessioned2026-01-26T14:36:15Z
dc.date.available2026-01-26T14:36:15Z
dc.date.issued2026
dc.description.abstract-translatedAccurate prediction of corona discharge ignition voltages Ui is essential for the design and reliability assessment of high-voltage systems. This paper presents a combined exper imental and numerical study focused on the evaluation of Ui for various electrode geometries, gap distances, and pressures in ambient or synthetic air. Based on a new analysis of experimental data, two numerical optimization models were developed and implemented in COMSOL Multiphysics® to determine ignition voltages with minimal computational cost. Both models are founded on two physically motivated assumptions: a constant crit ical electronavalanche intensity at corona onset and symmetry of the ignition electric field profile under low field homogeneity conditions with respect to varying gap distances. The first method is based on integration of the effective ionization coefficient along the discharge path, while the second relies on the local electric field at the electrode tip. In both cases, the Nelder–Mead optimization algorithm is employed to identify the critical volt age corresponding to corona inception. The proposed methods were validated against experimental data over a wide range of pressures, electrode configurations, and field homogeneity conditions. The predicted ignition voltages show good agreement with measurements, with a typical deviation of approximately 5 % and a maximum error below 10 % in a limited number of cases.While the integration-based optimization provides higher robustness and reduced dependence on empirical input, the field based optimization offers simplicity and rapid implementation. The presented approaches enable efficient parametric studies and provide practical tools for high-voltageinsulation analysis, the design of corona-resistant components, and the definition of boundary conditions in more advanced discharge simulationsen
dc.description.sponsorshipOP JAK Český inkubátor technologií pro energetické sítě, číslo CZ.02.01.01/00/23_020/0008490cs
dc.format12 s.cs
dc.identifier.urihttp://hdl.handle.net/11025/64528en
dc.language.isoenen
dc.publisherIEEE Transactions on Plasma Scienceen
dc.rights.accessopenAccessen
dc.subjectCOMSOL Multiphysics
dc.subjectzapálení koronového výboje
dc.subjectintegrace ionizačního koeficientu
dc.subjectnehomogenní elektrostatické pole
dc.subjectNelder-Mead optimalizační algoritmus
dc.subjecttlaková nádoba
dc.subject.translatedCOMSOL Multiphysicsen
dc.subject.translatedcorona discharge ignitionen
dc.subject.translatedionization coefficient integrationen
dc.subject.translatedinhomogeneous electrostatic fielden
dc.subject.translatedNelder–Mead optimization algorithmen
dc.subject.translatedpressure vesselen
dc.titleFast Calculation of the Corona Discharge Ignition Voltage Using the Nelder–Mead Optimizationen
dc.typepreprinten
dc.typepreprintcs
dc.type.versiondraftcs
dc.type.versiondraften
local.files.count1*
local.files.size20318798*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
IEEE_TPS_zmekof_preprint.pdf
Size:
19.38 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections