3D Human Animation from 2D Monocular Data Based on Motion Trend Prediction

dc.contributor.authorZhang, Li
dc.contributor.authorLi, Ling
dc.contributor.editorJorge, Joaquim
dc.contributor.editorSkala, Václav
dc.date.accessioned2013-12-16T12:59:51Z
dc.date.available2013-12-16T12:59:51Z
dc.date.issued2006
dc.description.abstractA model-based method is proposed in this paper for 3-dimensional human motion recovery, taking un-calibrated monocular data as input. The proposed method is able to generate smooth human motions that resemble the original motion from the same viewpoint the sequence was taken, and look continuous from any other viewpoint. The core of the proposed system is the motion trend prediction for reconstruction. To focus the research effort on motion reconstruction, “synthesized” input is first employed to ensure that the reconstruction algorithm is developed and evaluated accurately. Experiment results on real video data indicate that the proposed method is able to recover human motion from un-calibrated 2D monocular images with very high accuracy.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG '2006: Short Papers Proceedings: The 14-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2006: University of West Bohemia, Plzen, Czech Republic, January 31 - February 2, 2006, p. 117-124.en
dc.identifier.isbn80-86943-05-4
dc.identifier.urihttp://wscg.zcu.cz/WSCG2006/Papers_2006/Short/!WSCG2006_Short_Proceedings_Final.pdf
dc.identifier.urihttp://hdl.handle.net/11025/6605
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG '2006: Short Papers Proceedingsen
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectanimace člověkacs
dc.subject3D rekonstrukce pohybucs
dc.subject.translatedhuman animationen
dc.subject.translated3D motion reconstructionen
dc.title3D Human Animation from 2D Monocular Data Based on Motion Trend Predictionen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Li_Zhang.pdf
Size:
456.26 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
OPEN License Selector