Wall heat transfer in gas-fired furnaces: Effect of radiation modelling
dc.contributor.advisor | ||
dc.contributor.author | Vondál, Jiří | |
dc.contributor.author | Hájek, Jiří | |
dc.date.accessioned | 2015-09-02T07:42:01Z | |
dc.date.available | 2015-09-02T07:42:01Z | |
dc.date.issued | 2015 | |
dc.description.abstract | The purpose of this work is to study heat transfer to cooled walls in a MW-scale laboratory furnace with a dominating thermal radiation component. Experiment is performed in a specially designed combustion chamber with segmental water-cooled walls and profile of absor bed heat flux is measured along the flame. Non-premixed natural gas flame is stabilized by a guide-vane swirler. The unsteady governing equations of turbulent flow are solved by a finite-volume code with a two-equation k - ε realizable turbulence model, a combination of first-order and second-order upwind schemes and implicit time integration. The coupling of pressure with velocity is treated by SIMPLE (semi-implicit method for pressure-linked equations) algorithm. Radiative heat transfer as the main heat transfer method is modelled with special care by discr ete ordinates method and gas absorption coefficient is calculated by two alternatives of WSGGM (weighted sum of g rey gases model). The predicted total heat transfer rate is found to depend strongly on method chosen for the computation of mean beam length. The results of numerical simulations show that overall heat transfer in a process furnace can be su ccessfully predicted, while heat flux profile along the flame is more difficult to predi ct accurately. Good engineering accuracy is nevertheless achievable with reasonable computational resources. The trend of deviations is reported, which is useful for the interpretation of practi cal predictions of process furnaces (fired heaters). | en |
dc.format | 12 s. | cs |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Applied and Computational Mechanics. 2015, vol. 9, no. 1, p. 67-78 | en |
dc.identifier.issn | 1802-680X (Print) | |
dc.identifier.issn | 2336-1182 (Online) | |
dc.identifier.uri | http://www.kme.zcu.cz/acm/acm/article/view/276/322 | |
dc.identifier.uri | http://hdl.handle.net/11025/15518 | |
dc.language.iso | en | en |
dc.publisher | University of West Bohemia | en |
dc.relation.ispartofseries | Applied and Computational Mechanics | en |
dc.rights | © 2015 University of West Bohemia. All rights reserved. | en |
dc.rights.access | openAccess | en |
dc.subject | matematické modelování | cs |
dc.subject | přenos tepla | cs |
dc.subject | mechanika plynů | cs |
dc.subject.translated | gas combustion | en |
dc.subject.translated | radiative heat transfer | en |
dc.subject.translated | numerical modelling | en |
dc.title | Wall heat transfer in gas-fired furnaces: Effect of radiation modelling | en |
dc.type | článek | cs |
dc.type | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- Vondal.pdf
- Size:
- 1.81 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: