Grain boundaries derived from layered Fe/Co di-hydroxide porous prickly-like nanosheets as potential electrocatalyst for efficient electrooxidation of hydrazine

Abstract

Constructing a potentially stable and highly active nanostructured catalyst for hydrazine electro-oxidation is of substantial importance in direct-hydrazine fuel cells (DHFCs) application. In this work, we grow layered pricklylike Fe/Co di-hydroxide porous nanostructures as bifunctional catalysts on the surface of nickel mesh (Fe/Co/ NiMn D-HPNs) via controllable electroplating method for an efficient electrooxidation reaction of hydrazine. The layered prickly-like Fe/Co/NiMn D-HPNs samples are explored as potential catalysts for electrooxidation of hydrazine with the enhanced catalytic current response (32.4 mA cm􀀀 2), which is higher than the monohydroxide nanostructured electrodes (Fe@ D-HPNs and Co@ D-HPNs). The obtained higher catalytic activity is mainly attributed to layered prickly-like nanostructures with a large electroactive surface area (116.5 cm􀀀 2),Fe and Co elements that promoted synergetic effect, and the presence of grain-boundaries on the surface of prickly-like porous layers. The layered prickly-like Fe/Co/NiM30 D-HPNs catalyst displayed a low Tafel slope (67.4 mV dec􀀀 1) and longer stability of its original morphology of layered prickly-like porous nanostructures toward the electrooxidation of hydrazine even after >10000 sec. Thus, the layered prickly-like Fe/Co/NiM30 DHPNs are considered as a potential and robust catalyst, and provide new insights in the construction of highlyactive and low-cost alternative non-noble nanostructured materials for DHFCs applications.

Description

Subject(s)

Fe/Co di-hydroxide, porous nanostructures, electrooxidation, hydrazine, fuel cells

Citation