Physics-informed nuclear imaging for glioma localization and recurrence prediction

dc.contributor.authorSepulveda Leon
dc.contributor.editorMašata, David
dc.date.accessioned2025-09-22T08:51:39Z
dc.date.available2025-09-22T08:51:39Z
dc.date.issued2025
dc.description.abstract-translatedTumor recurrence in high-grade gliomas remains one of the major challenges in neuro-oncology. This work presents a hybrid model combining multimodal MRI and physics-informed equations based on nuclear energy transport, implemented using PINNs (Physics-Informed Neural Networks). Using the BraTS 2021 dataset, the model learns tumor morphology and infers recurrence-prone regions based on the assumption of non-uniform energy deposition similar to that of radionuclide-based therapies in nuclear medicine. This approach aims to bridge medical imaging, nuclear transport modeling, and deep learning to move toward personalized dosimetry and recurrence prediction.en
dc.format2 s.cs
dc.identifier.isbn978-80-261-1307-2
dc.identifier.isbn978-80-261-1308-9 (printed)
dc.identifier.urihttp://hdl.handle.net/11025/62830
dc.language.isoenen
dc.publisherUniversity of West Bohemia in Pilsenen
dc.rights© University of West Bohemia in Pilsenen
dc.rights.accessopenAccessen
dc.subjectpostercs
dc.subject.translatedposteren
dc.titlePhysics-informed nuclear imaging for glioma localization and recurrence predictionen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
local.files.count2*
local.files.size2675567*
local.has.filesyes*

Files

Original bundle
Showing 1 - 2 out of 2 results
No Thumbnail Available
Name:
JD_2025_PROCEEDINGS_electronic-63-64.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
JD_2025_PROCEEDINGS_electronic_uvod+tiraz.pdf
Size:
352.86 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: