Physics-informed nuclear imaging for glioma localization and recurrence prediction
| dc.contributor.author | Sepulveda Leon | |
| dc.contributor.editor | Mašata, David | |
| dc.date.accessioned | 2025-09-22T08:51:39Z | |
| dc.date.available | 2025-09-22T08:51:39Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract-translated | Tumor recurrence in high-grade gliomas remains one of the major challenges in neuro-oncology. This work presents a hybrid model combining multimodal MRI and physics-informed equations based on nuclear energy transport, implemented using PINNs (Physics-Informed Neural Networks). Using the BraTS 2021 dataset, the model learns tumor morphology and infers recurrence-prone regions based on the assumption of non-uniform energy deposition similar to that of radionuclide-based therapies in nuclear medicine. This approach aims to bridge medical imaging, nuclear transport modeling, and deep learning to move toward personalized dosimetry and recurrence prediction. | en |
| dc.format | 2 s. | cs |
| dc.identifier.isbn | 978-80-261-1307-2 | |
| dc.identifier.isbn | 978-80-261-1308-9 (printed) | |
| dc.identifier.uri | http://hdl.handle.net/11025/62830 | |
| dc.language.iso | en | en |
| dc.publisher | University of West Bohemia in Pilsen | en |
| dc.rights | © University of West Bohemia in Pilsen | en |
| dc.rights.access | openAccess | en |
| dc.subject | poster | cs |
| dc.subject.translated | poster | en |
| dc.title | Physics-informed nuclear imaging for glioma localization and recurrence prediction | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer reviewed | en |
| local.files.count | 2 | * |
| local.files.size | 2675567 | * |
| local.has.files | yes | * |
Files
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: