Klasifikace pohybu z EEG dat

Abstract

Pacienti s paralýzou nervosvalového systému mají těžkou cestu k rehabilitaci. K zefektivnění a zrychlení této rehabilitace je potřeba, aby při rehabilitaci nebyly procvičovány jen svaly, ale i mozek. Pro lepší zapojení mozku se používá Brain-computer interface (BCI). BCI se snaží rozpoznávat mozkové signály a převádět je do příkazů pro zařízení. Za tím účelem využíváme Motor Imagery (MI), kde si pohyb pouze představujeme bez jeho vykonání, protože je dokázáno, že tyto dva stavy jsou téměř totožné. Tyto signály reprezentované pomocí EEG jsou v této práci rozpoznávany aktuálními klasifikátory, jako jsou MLP, CNN, LSTM a Transformer. Tato práce ukázala velkou odlišnost mezi jednotlivými lidmi v experimentech. Nejvíce úspěšní lidé dosáhli až 75 % přesnosti klasifikace jejich pohybu.

Description

Subject(s)

ann, mlp, cnn, lstm. transformer, strojové učení, eeg, představa pohybu, bci, mi datasety

Citation

Collections