Zvyšování bezpečnosti počítačových sítí zesílenou detekcí odlehlých hodnot v datových tocích

Date issued

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Západočeská univerzita v Plzni

Abstract

V několika posledních letech se metody strojového učení (zvláště ty zabývající se detekcí odlehlých hodnot - OD) v oblasti kyberbezpečnosti opíraly o zjišťování anomálií síťového provozu spočívajících v nových schématech útoků. Detekce anomálií v počítačových sítích reálného světa se ale stala stále obtížnější kvůli trvalému nárůstu vysoce objemných, rychlých a dimenzionálních průběžně přicházejících dat (SD), pro která nejsou k dispozici obecně uznané a pravdivé informace o anomalitě. Účinná detekční schémata pro vestavěná síťová zařízení musejí být rychlá a paměťově nenáročná a musejí být schopna se potýkat se změnami konceptu, když se vyskytnou. Cílem této disertace je zlepšit bezpečnost počítačových sítí zesílenou detekcí odlehlých hodnot v datových proudech, obzvláště SD, a dosáhnout kyberodolnosti, která zahrnuje jak detekci a analýzu, tak reakci na bezpečnostní incidenty jako jsou např. nové zlovolné aktivity. Za tímto účelem jsou v práci navrženy čtyři hlavní příspěvky, jež byly publikovány nebo se nacházejí v recenzním řízení časopisů. Zaprvé, mezera ve volbě vlastností (FS) bez učitele pro zlepšování již hotových metod OD v datových tocích byla zaplněna navržením volby vlastností bez učitele pro detekci odlehlých průběžně přicházejících dat označované jako UFSSOD. Následně odvozujeme generický koncept, který ukazuje dva aplikační scénáře UFSSOD ve spojení s online algoritmy OD. Rozsáhlé experimenty ukázaly, že UFSSOD coby algoritmus schopný online zpracování vykazuje srovnatelné výsledky jako konkurenční metoda upravená pro OD. Zadruhé představujeme nový aplikační rámec nazvaný izolovaný les založený na počítání výkonu (PCB-iForest), jenž je obecně schopen využít jakoukoliv online OD metodu založenou na množinách dat tak, aby fungovala na SD. Do tohoto algoritmu integrujeme dvě varianty založené na klasickém izolovaném lese. Rozsáhlé experimenty provedené na 23 multidisciplinárních datových sadách týkajících se bezpečnostní problematiky reálného světa ukázaly, že PCB-iForest jasně překonává už zavedené konkurenční metody v 61 % případů a dokonce dosahuje ještě slibnějších výsledků co do vyváženosti mezi výpočetními náklady na klasifikaci a její úspěšností. Zatřetí zavádíme nový pracovní rámec nazvaný detekce odlehlých hodnot a rozpoznávání schémat útoku proudovým způsobem (SOAAPR), jenž je na rozdíl od současných metod schopen zpracovat výstup z různých online OD metod bez učitele proudovým způsobem, aby získal informace o nových schématech útoku. Ze seshlukované množiny korelovaných poplachů jsou metodou SOAAPR vypočítány tři různé soukromí zachovávající podpisy podobné otiskům prstů, které charakterizují a reprezentují potenciální scénáře útoku s ohledem na jejich komunikační vztahy, projevy ve vlastnostech dat a chování v čase. Evaluace na dvou oblíbených datových sadách odhalila, že SOAAPR může soupeřit s konkurenční offline metodou ve schopnosti korelace poplachů a významně ji překonává z hlediska výpočetního času . Navíc se všechny tři typy podpisů ve většině případů zdají spolehlivě charakterizovat scénáře útoků tím, že podobné seskupují k sobě. Začtvrté představujeme algoritmus nepárového kódu autentizace zpráv (Uncoupled MAC), který propojuje oblasti kryptografického zabezpečení a detekce vniknutí (IDS) pro síťovou bezpečnost. Zabezpečuje síťovou komunikaci (autenticitu a integritu) kryptografickým schématem s podporou druhé vrstvy kódy autentizace zpráv, ale také jako vedlejší efekt poskytuje funkcionalitu IDS tak, že vyvolává poplach na základě porušení hodnot nepárového MACu. Díky novému samoregulačnímu rozšíření algoritmus adaptuje svoje vzorkovací parametry na základě zjištění škodlivých aktivit. Evaluace ve virtuálním prostředí jasně ukazuje, že schopnost detekce se za běhu zvyšuje pro různé scénáře útoku. Ty zahrnují dokonce i situace, kdy se inteligentní útočníci snaží využít slabá místa vzorkování.

Description

Subject(s)

síťová bezpečnost, strojové učení, detekce vniknutí, detekce odlehlých hodnot, průběžně přicházející data, online učení, učení bez učitele, volba vlastností, analýza poplachů, korelace poplachů, scénář útoku, autentizace zpráv, samoregulace

Citation