Lipreading with spiking neurons one pass learning

dc.contributor.authorSéguier, R.
dc.contributor.authorCladel, N.
dc.contributor.authorFoucher, C.
dc.contributor.authorMercier, D.
dc.contributor.editorSkala, Václav
dc.date.accessioned2013-07-18T12:11:38Z
dc.date.available2013-07-18T12:11:38Z
dc.date.issued2002
dc.description.abstractthe system is then able to recognize these words throughout different sessions during which the position and the chrominance of the images of the speaker's mouth strongly change.en
dc.description.abstract-translatedWe present in this article a lipreading system implementing spiking neurons (STANs). A new preprocessing is proposed in order to reduce as much as possible the learning phase of the system. This training is done in one pass: the user pronounces once all of the words of the dictionaryen
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of WSCG. 2002, vol. 10, no. 1-2, p. 397-404.en
dc.identifier.issn1213-6972 (print)
dc.identifier.issn1213-6980 (CD-ROM)
dc.identifier.issn1213-6964 (online)
dc.identifier.urihttp://wscg.zcu.cz/wscg2002/Papers_2002/C23.zip
dc.identifier.urihttp://hdl.handle.net/11025/6005
dc.language.isoensk
dc.publisherUNION Agencycs
dc.relation.ispartofseriesJournal of WSCGen
dc.rights© UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectodezírání ze rtůcs
dc.subjectneuronycs
dc.subjectrozpoznávání obrazůcs
dc.subject.translatedlipreadingen
dc.subject.translatedneuronsen
dc.subject.translatedimage recognitionen
dc.titleLipreading with spiking neurons one pass learningfr
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 2 out of 2 results
No Thumbnail Available
Name:
c23.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format
Description:
Plný text
No Thumbnail Available
Name:
c23.ps
Size:
3.54 MB
Format:
Postscript Files
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: