Návrh jednoduchého klasifikátoru pro detekci změn spektrálních vlastností EEG (tzv. ERD/ERS) v souvislosti s pohybem ruky.

dc.contributor.advisorMautner Pavel, Ing. Ph.D.
dc.contributor.authorMochura, Pavel
dc.contributor.refereeMouček Roman, Ing. Ph.D.
dc.date.accepted2019-8-27
dc.date.accessioned2020-07-17T13:49:26Z
dc.date.available2018-10-10
dc.date.available2020-07-17T13:49:26Z
dc.date.issued2019
dc.date.submitted2019-6-27
dc.description.abstractKontinuální EEG aktivita u měřených subjektů obsahuje různé vzory podle toho, co měřený subjekt vykonával. ERD a ERS jsou příklady takovýchto vzorů, které souvisejí s pohybem ruky (prstu, nohy). Tato práce se zabývá detekcí pohybu na základě ERD/ERS vzorů. Spojením ERD/ERS vznikají příznakové vektory, které jsou klasifikovány neuronovou sítí. Výsledná neuronová síť se skládá z jedné vstupní a výstupní vrstvy a ze dvou skrytých vrstev, kde první skrytá vrstva obsahuje 3 000 neuronů a druhá skrytá vrstva 1 500 neuronů. Pro trénování této neuronové sítě je použita trénovací množina příznakových vektorů a pro následné nastavování vah je použit algoritmus Backpropagation. S tímto nastavením a trénováním je neuronová síť schopna klasifikovat pohyb v EEG záznamu s průměrnou přesností 79,92%.cs
dc.description.abstract-translatedContinual EEG activity in the measured subjects includes various types according to what the subject performed. ERD and ERS are examples of such types related to hand motion (finger or foot). This thesis deals with the detection of motion based on the ERD/ERS patterns. Through the connection of ERD/ERS, specific vectors which are classified by neural network are created. The resulting neural network consists of one input and one output layer and two hidden layers. The first hidden layer contains 3,000 neurons and the other one 1,500 neurons. A training set of specific vectors is used for the training of this neural network and the Backpropagation algorithm is used for the subsequent adjustment of weight. Within this setting and training, the neural network is able to classify motion in an EEG record with an average accuracy of 79.92%.en
dc.description.resultObhájenocs
dc.format48 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier79504
dc.identifier.urihttp://hdl.handle.net/11025/38281
dc.language.isocscs
dc.publisherZápadočeská univerzita v Plznics
dc.rightsPlný text práce je přístupný bez omezení.cs
dc.rights.accessopenAccessen
dc.subjectelektroencefalografiecs
dc.subjecterd/erscs
dc.subjectpřípravné evokované potenciálycs
dc.subjectneuronová síťcs
dc.subjectklasifikace eeg signálucs
dc.subjectbackpropagationcs
dc.subjectpříznakové vektorycs
dc.subject.translatedelectroencephalographyen
dc.subject.translatederd/ersen
dc.subject.translatedbereitschaftspotentialsen
dc.subject.translatedneural networken
dc.subject.translatedeeg signal classificationen
dc.subject.translatedbackpropagationen
dc.subject.translatedfeature vectorsen
dc.thesis.degree-grantorZápadočeská univerzita v Plzni. Fakulta aplikovaných vědcs
dc.thesis.degree-levelBakalářskýcs
dc.thesis.degree-nameBc.cs
dc.thesis.degree-programInženýrská informatikacs
dc.titleNávrh jednoduchého klasifikátoru pro detekci změn spektrálních vlastností EEG (tzv. ERD/ERS) v souvislosti s pohybem ruky.cs
dc.title.alternativeDesign of a simple classificator for detecting changes of spectral properties of EEG (ERD/ERS) concerning hand movement.en
dc.typebakalářská prácecs
local.relation.IShttps://portal.zcu.cz/StagPortletsJSR168/CleanUrl?urlid=prohlizeni-prace-detail&praceIdno=79504

Files

Original bundle
Showing 1 - 4 out of 4 results
No Thumbnail Available
Name:
A15B0097P.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description:
Plný text práce
No Thumbnail Available
Name:
A15B0097P Posudek.pdf
Size:
37.42 KB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta práce
No Thumbnail Available
Name:
A15B0097P Hodnoceni.pdf
Size:
29.37 KB
Format:
Adobe Portable Document Format
Description:
Posudek vedoucího práce
No Thumbnail Available
Name:
A15B0097P Obhajoba.pdf
Size:
53.56 KB
Format:
Adobe Portable Document Format
Description:
Průběh obhajoby práce