Efficient implementation of higher order image interpolation

Date issued

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Václav Skala - UNION Agency

Abstract

This work presents a new method of fast cubic and higher order image interpolation. The evaluation of the piecewise n-th order polynomial kernels is accelerated by transforming the polynomials into the interval [0,1], which has the advantage that some terms of the polynomials disappear, and that several coefficients could be precalculated, which is proven in the paper. The results are exactly the same as using standard n-th order interpolation, but the computational complexity is reduced. Calculating the interpolation weights for the cubic convolution only needs about 60% of the time compared to the classical method optimized by the Horner's rule. This allows a new efficient implementation for image interpolation.

Description

Subject(s)

interpolace obrazů, rekonstrukce obrazů

Citation

WSCG '2004: Short Communications: the 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2004, 2.-6. February 2004 Plzeň, p. 213-218.
OPEN License Selector