Deep learning for historical cadastral maps digitization: overview, challenges and potential

dc.contributor.authorIgnjatić, Jelena
dc.contributor.authorNikolić, Bojana
dc.contributor.authorRikalović, Aleksandar
dc.contributor.editorSkala, Václav
dc.date.accessioned2019-05-10T10:32:33Z
dc.date.available2019-05-10T10:32:33Z
dc.date.issued2018
dc.description.abstractCartographic heritage of historical cadastral maps represent remarkable geospatial data. Historical cadastral maps are generally regarded as an essential part of the land management infrastructure (buildings, streets, canals, bridges, etc.). Today these cadastral maps are still in use in a digital raster form (scanned maps). Digitization of cadastral maps is time consuming and it is a challenge for scientists and engineers to find ways to automatically convert raster into vector maps. The process of map digitization typically involves several stages: preprocessing, visual object detection and classification, vector representation postprocessing and extracting information from text. Although neural networks have had a long history of use in the domain, their applications remain limited to extracting the information from text. Recent convergence of advancements in the domains of training deep neural networks (DNN) and GPU hardware allowed DNNs to achieve state-of-the-art results in computer vision applications, beyond hand-written text recognition. This paper provides an overview of different approaches to historical cadastral maps digitization, focusing of the challenges and the potential of using deep neural networks in map digitization.en
dc.format6 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG 2018: poster papers proceedings: 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 42-47.en
dc.identifier.doihttps://doi.org/10.24132/CSRN.2018.2803.6
dc.identifier.isbn978-80-86943-42-8
dc.identifier.issn2464-4617
dc.identifier.uriwscg.zcu.cz/WSCG2018/!!_CSRN-2803.pdf
dc.identifier.urihttp://hdl.handle.net/11025/34636
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG 2018: poster papers proceedingsen
dc.rights© Václav Skala - Union Agencycs
dc.rights.accessopenAccessen
dc.subjectkonvoluční neuronové sítěcs
dc.subjecthluboké neuronové sítěcs
dc.subjectdigitalizace mapcs
dc.subjectvektorizace mapcs
dc.subjectrozpoznání vzorucs
dc.subject.translatedconvolutional neural networksen
dc.subject.translateddeep neural networksen
dc.subject.translatedmap digitizationen
dc.subject.translatedmap vectorizationen
dc.subject.translatedpattern recognitionen
dc.titleDeep learning for historical cadastral maps digitization: overview, challenges and potentialen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Ignjatić.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: