Fast and memory efficient feature detection using multiresolution probabilistic boosting trees

dc.contributor.authorSchulze, Florian
dc.contributor.authorMajor, David
dc.contributor.authorBühler, Katja
dc.contributor.editorSkala, Václav
dc.date.accessioned2013-02-13T13:54:20Z
dc.date.available2013-02-13T13:54:20Z
dc.date.issued2011
dc.description.abstractThis paper presents a highly optimized algorithm for fast feature detection in 3D volumes. Rapid detection of structures and landmarks in medical 3D image data is a key component for many medical applications. To obtain a fast and memory efficient classifier, we introduce probabilistic boosting trees (PBT) with partial cascading and classifier sorting. The extended PBT is integrated into a multiresolution scheme, in order to improve performance and works on block cache data structure which optimizes the memory footprint. We tested our framework on real world clinical datasets and showed that classical PBT can be significantly speeded up even in an environment with limited memory resources using the proposed optimizations.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of WSCG. 2011, vol. 19, no. 1-3, p. 33-40.en
dc.identifier.issn1213–6972 (hardcopy)
dc.identifier.issn1213–6980 (CD-ROM)
dc.identifier.issn1213–6964 (on-line)
dc.identifier.urihttp://wscg.zcu.cz/WSCG2011/!_2011_J_WSCG_1-3.pdf
dc.identifier.urihttp://hdl.handle.net/11025/1247
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesJournal of WSCGen
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectdetekce znakůcs
dc.subjectstrojové učenícs
dc.subjectrozhodovací stromycs
dc.subject.translatedfeature detectionen
dc.subject.translatedmachine learningen
dc.subject.translateddecision treesen
dc.titleFast and memory efficient feature detection using multiresolution probabilistic boosting treesen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Schulze.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
OPEN License Selector