Soft X-ray Fermi surface tomography of palladium and rhodium via momentum microscopy

dc.contributor.authorTan, Xin Liang
dc.contributor.authorHagiwara, Kenta
dc.contributor.authorChen, Ying-Jiun
dc.contributor.authorSchusser, Jakub
dc.contributor.authorCojocariu, Iulia
dc.contributor.authorBaranowski, Daniel
dc.contributor.authorFeyer, Vitaliy
dc.contributor.authorMinár, Jan
dc.contributor.authorSchneider, Claus M.
dc.contributor.authorTusche, Christian
dc.date.accessioned2025-06-27T10:07:14Z
dc.date.available2025-06-27T10:07:14Z
dc.date.issued2023
dc.date.updated2025-06-27T10:07:13Z
dc.description.abstractFermi surfaces of transition metals, which describe all thermodynamical and transport quantities of solids, often fail to be modeled by one-electron mean-field theory due to strong correlations among the valence electrons. In addition, relativistic spin-orbit coupling pronounced in heavier elements lifts the degeneracy of the energy bands and further modifies the Fermi surface. Palladium and rhodium, two 4d metals attributed to show significant spin-orbit coupling and electron correlations, are ideal for a systematic and fundamental study of the two fundamental physical phenomena and their interplay in the electronic structure. In this study, we explored the Fermi surface of the 4d noble metals palladium and rhodium obtained via high-resolution constant initial state momentum microscopy. The complete 3D-Fermi surfaces of palladium and rhodium were tomographically mapped using soft X-ray photon energies from 34 eV up to 660 eV. To fully capture the orbital angular momentum of states across the Fermi surface, the Fermi surface tomography was performed using p-and s polarized light. Applicability and limitations of the nearly-free electron final state model in photoemission are discussed using a complex band structure model supported by experimental evidence. The significance of spin-orbit coupling and electron correlations across the Fermi surfaces will be discussed within the context of the photoemission results. State-of-the-art fully relativistic Korringa-Kohn-Rostoker (KKR) calculations within the one-step model of photoemission are used to support the experimental results.en
dc.format10
dc.identifier.document-number001063342100001
dc.identifier.doi10.1016/j.ultramic.2023.113820
dc.identifier.issn0304-3991
dc.identifier.obd43941823
dc.identifier.orcidSchusser, Jakub 0000-0001-8260-0234
dc.identifier.orcidMinár, Jan 0000-0001-9735-8479
dc.identifier.urihttp://hdl.handle.net/11025/61792
dc.language.isoen
dc.project.IDEF15_003/0000358
dc.relation.ispartofseriesULTRAMICROSCOPY
dc.rights.accessC
dc.subjectmomentum microscopyen
dc.subjectFermi surface tomographyen
dc.subjectphotoelectron final-stateen
dc.subjectcomplex band structureen
dc.subjectfinal-state self-energyen
dc.titleSoft X-ray Fermi surface tomography of palladium and rhodium via momentum microscopyen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size4362720*
local.has.filesyes*
local.identifier.eid2-s2.0-85168003773

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
NTC-JIM-23-040_THC+23_Pd_Fermi_Surface_1-s2.0-S0304399123001377-main.pdf
Size:
4.16 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: