Examination of PCA Utilisation for Multilabel Classifier of Multispectral Images

dc.contributor.authorKarpowicz, Filip
dc.contributor.authorKepinski, Wiktor
dc.contributor.authorStaszyński, Bartosz
dc.contributor.authorSarwas, Grzegorz
dc.contributor.editorSkala, Václav
dc.date.accessioned2025-07-30T10:21:23Z
dc.date.available2025-07-30T10:21:23Z
dc.date.issued2025
dc.description.abstract-translatedThis paper investigates the utility of Principal Component Analysis (PCA) for multi-label classification of multispectral images using ResNet50 and DINOv2, acknowledging the high dimensionality of such data and the associated processing challenges. Multi-label classification, where each image may belong to multiple classes, adds further complexity to feature extraction. Our pipeline includes an optional PCA step that reduces the data to three dimensions before feeding it into a three-layer classifier. The findings demonstrate that the effectiveness of PCA for multi-label multispectral image classification depends strongly on the chosen deep learning architecture and training strategy, opening avenues for future research into self-supervised pre-training and alternative dimensionality reduction approaches.en
dc.description.sponsorshipThe research was funded by POB Cybersecurity and Data Analysis of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) program.
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.doihttp://www.doi.org/10.24132/CSRN.2025-26
dc.identifier.issn2464-4617 (Print)
dc.identifier.issn2464-4625 (online)
dc.identifier.urihttp://hdl.handle.net/11025/62236
dc.language.isoenen
dc.publisherVaclav Skala - UNION Agencyen
dc.rights© Vaclav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectPCAcs
dc.subjectextrakce příznakůcs
dc.subjectvíceznačkový klasifikátorcs
dc.subjectmultispektrální snímkycs
dc.subjectměkké kontrastivní učenícs
dc.subject.translatedPCAen
dc.subject.translatedfeature extractionen
dc.subject.translatedmultilabel classifieren
dc.subject.translatedmultispectral imagesen
dc.subject.translatedsoft contrastive learningen
dc.titleExamination of PCA Utilisation for Multilabel Classifier of Multispectral Imagesen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
dc.type.versionpublishedVersionen
local.files.count1*
local.files.size1598623*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
C97.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: