Multiresolution Laplacian sparse coding technique for image representation

dc.contributor.authorJemel, Intidar
dc.contributor.authorEjbali, Ridha
dc.contributor.authorZaied, Mourad
dc.contributor.editorSkala, Václav
dc.date.accessioned2018-04-10T09:39:42Z
dc.date.available2018-04-10T09:39:42Z
dc.date.issued2016
dc.description.abstractSparse coding techniques have given good results in different domains especially in feature quantization and image representation. However, the major weakness of those techniques is their inability to represent the similarity between features. This limitation is due to the separate representation of features. Although the Laplacian sparse coding doesn’t focus on the spatial similarity in the image space, it preserves the locality of the features only in the data space. Due to this, the similarity between two local features belong to the similarity of their spatial neighborhood in the image. To overcome this flaw, we propose the integration of similarity based on Kullback-Leibler and wavelet decomposition in the domain of an image. This technique may surmount those limitations by taking into account each element of an image and its neighbors in similarity calculation. Classifications rates given by our approach show a clear improvement compared to those cited in this article.en
dc.format6 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG 2016: full papers proceedings: 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS Association, p. 55-60.en
dc.identifier.isbn978-80-86943-57-2
dc.identifier.issn2464–4617 (print)
dc.identifier.issn2464–4625 (CD-ROM)
dc.identifier.uriwscg.zcu.cz/WSCG2016/!!_CSRN-2601.pdf
dc.identifier.urihttp://hdl.handle.net/11025/29531
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG 2016: full papers proceedingsen
dc.rights© Václav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectřídké kódovánícs
dc.subjectfunkce kvantizacecs
dc.subjectobrazová reprezentacecs
dc.subjectLaplaceovo řídké kódovánícs
dc.subjectKullback-Leiblerův přístupcs
dc.subjectvlnový rozkladcs
dc.subject.translatedsparse codingen
dc.subject.translatedfeatures quantizationen
dc.subject.translatedimage representationen
dc.subject.translatedLaplace sparse codingen
dc.subject.translatedKullback-Leibler approachen
dc.subject.translatedwavelet decompositionen
dc.titleMultiresolution Laplacian sparse coding technique for image representationen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Jemel.pdf
Size:
457.36 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: