Rychlé algoritmy pro třídění pacientů s podezřením na akutní infarkt myokardu

dc.contributor.advisorRajdl Daniel, MUDr. Ph.D.
dc.contributor.authorMaroušková, Lucie
dc.contributor.refereeCibulka Roman, MUDr. Ph.D., MBA
dc.date.accepted2021-6-24
dc.date.accessioned2021-06-25T12:33:12Z
dc.date.available2020-6-1
dc.date.available2021-06-25T12:33:12Z
dc.date.issued2021
dc.date.submitted2021-4-7
dc.description.abstractHlavním cílem práce bylo zjistit chování 1h algoritmu při třídění pacientů, kteří přichází s bolestí na hrudi v podmínkách Centrálního příjmu FN Plzeň a porovnat zařazení pacientů pomocí tohoto algoritmu s klinickým závěrem. Retrospektivně jsme do studie celkem zařadili 2023 vzorků krve; z nich 487 pacientů mělo 2 náběry pro 1h algoritmus a u 385 pacientů jsme z klinického informačního systému vypsali klinický závěr. Prvním náběrem by mohlo být vyřazeno 33 % a zařazeno 9 % pacientů; při použití dvou náběrů (1h algoritmus) bylo ve větvi pro vyřazení, pozorování a zařazení 63,7 %, 25,7 % a 10,7 % pacientů. Stoupající věk a eGFR pod 1 mL/s nejvíce snižovaly účinnost algoritmu. Diagnostická senzitivita, negativní prediktivní hodnota, specifičnost a pozitivní prediktivní hodnota pro akutní infarkt myokardu byly: 78 %, 93 %, 99,4 a 21,2 % resp. 75 % náběrů je odebráno do přibližně 90 minut od prvního náběru. Myoglobin ani CK pravděpodobně nevylepšují diagnostické vlastnosti 1h algoritmu. Výsledky naší práce budou použity pro optimalizaci managementu 1h algoritmu a zkvalitnění péče o pacienty s bolestmi na hrudi.cs
dc.description.abstract-translatedThe main goal of the work was to find out the behavior of the 1h algorithm in the classification of patients who come with chest pain in the conditions of the Central admission of the faculty hospital in Pilsen and to compare the classification of patients using this algorithm with a clinical conclusion. We recruited retrospectively 2023 blood samples in total; from this amount to 487 patients 1h algorithm could be applied and in 385 patients the clinical decision was drawn from clinical information software. We could assign to exclude branch 33 % and to include branch 9 % of patients by the first blood sample only. When we used 1h algorithm (2 blood samples), there were 63.7 % patients in the exclude branch, 25.7 % were in the observation branch and 10.7 % were in include branch. Especially with increasing age and eGFR under 1 mL/s, effectivity of the 1h algorithm decreased. Diagnostic sensitivity, negative predictive value, specificity and positive predictive value for acute myocardial infarction were: 78 %, 93 %, 99.4 a 21,2 % resp. 75 % of samples were drawn up to 90 minutes from the first blood draw. Neither myoglobin nor CK probably don´t improve diagnostic properties of 1h algorithm. Results of this thesis will be used for optimization of 1h algorithm management and improvement of patients with chest pain care.en
dc.description.resultObhájenocs
dc.format70 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier87203
dc.identifier.urihttp://hdl.handle.net/11025/44194
dc.language.isocscs
dc.publisherZápadočeská univerzita v Plznics
dc.rightsPlný text práce je přístupný bez omezení.cs
dc.rights.accessopenAccessen
dc.subjectakutní infarkt myokarducs
dc.subjectrychlé algoritmycs
dc.subjectischemická choroba srdečnícs
dc.subject.translatedacute myocardial infarctionen
dc.subject.translatedrapid algorithmsen
dc.subject.translatedischemic heart diseaseen
dc.thesis.degree-grantorZápadočeská univerzita v Plzni. Fakulta zdravotnických studiícs
dc.thesis.degree-levelBakalářskýcs
dc.thesis.degree-nameBc.cs
dc.thesis.degree-programSpecializace ve zdravotnictvícs
dc.titleRychlé algoritmy pro třídění pacientů s podezřením na akutní infarkt myokarducs
dc.title.alternativeRapid algorithms for classifying patients with suspected acute myocardial infarctionen
dc.typebakalářská prácecs
local.relation.IShttps://portal.zcu.cz/StagPortletsJSR168/CleanUrl?urlid=prohlizeni-prace-detail&praceIdno=87203

Files

Original bundle
Showing 1 - 4 out of 4 results
No Thumbnail Available
Name:
Marouskova_Lucie_ZL_BPDP.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
Description:
Plný text práce
No Thumbnail Available
Name:
Marouskova_VP.pdf
Size:
287.46 KB
Format:
Adobe Portable Document Format
Description:
Posudek vedoucího práce
No Thumbnail Available
Name:
Marouskova_OP.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta práce
No Thumbnail Available
Name:
Marouskova.pdf
Size:
344.88 KB
Format:
Adobe Portable Document Format
Description:
Průběh obhajoby práce