Periodic solution of non-symmetrical rotor vibration

dc.contributor.authorDupal, Jan
dc.date.accessioned2025-06-20T08:36:22Z
dc.date.available2025-06-20T08:36:22Z
dc.date.issued2024
dc.date.updated2025-06-20T08:36:22Z
dc.description.abstractThe presentation deals with an approach to periodic solution of rotor vibration represented by time dependent mathematical model. The non-symmetrical rotor is modelled in rotating coordinate system and for this reason the coefficient matrices are constant. On the contrary the stiffness matrix of the bearings is time periodically dependent. For the solution was used collocation of the describing matrix integral equation whose result is vector displacement expressed in the individual collocation points. The periodic progress of displacements is checked by time by Runge-Kutta continuation.en
dc.format2
dc.identifier.isbn978-80-261-1249-5
dc.identifier.obd43944888
dc.identifier.orcidDupal, Jan 0009-0000-5092-5050
dc.identifier.urihttp://hdl.handle.net/11025/60376
dc.language.isoen
dc.project.IDFW06010052
dc.publisherUniversity of West Bohemia
dc.relation.ispartofseriesComputational Mechanics 2024
dc.subjectvibrationen
dc.subjectperiodic Green’s functionen
dc.subjectevolution systemen
dc.subjectlinear time dependent matriceen
dc.titlePeriodic solution of non-symmetrical rotor vibrationen
dc.typeStať ve sborníku (O)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size468538*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
CM2024_Conference_Proceedings-1-8.pdf
Size:
457.56 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: