3D object classification and parameter estimation based on parametric procedural models
| dc.contributor.author | Getto, Roman | |
| dc.contributor.author | Fina, Kenten | |
| dc.contributor.author | Jarms, Lennart | |
| dc.contributor.author | Kuijper, Arjan | |
| dc.contributor.author | Fellner, Dieter W. | |
| dc.contributor.editor | Skala, Václav | |
| dc.date.accessioned | 2019-05-10T07:49:23Z | |
| dc.date.available | 2019-05-10T07:49:23Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | Classifying and gathering additional information about an unknown 3D objects is dependent on having a large amount of learning data. We propose to use procedural models as data foundation for this task. In our method we (semi-)automatically define parameters for a procedural model constructed with a modeling tool. Then we use the procedural models to classify an object and also automatically estimate the best parameters. We use a standard convolutional neural network and three different object similarity measures to estimate the best parameters at each degree of detail. We evaluate all steps of our approach using several procedural models and show that we can achieve high classification accuracy and meaningful parameters for unknown objects. | en |
| dc.format | 10 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | WSCG 2018: full papers proceedings: 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS Association, p. 10-19. | en |
| dc.identifier.doi | https://doi.org/10.24132/CSRN.2018.2801.2 | |
| dc.identifier.isbn | 978-80-86943-40-4 | |
| dc.identifier.issn | 2464–4617 (print) | |
| dc.identifier.issn | 2464–4625 (CD-ROM) | |
| dc.identifier.uri | wscg.zcu.cz/WSCG2018/!!_CSRN-2801.pdf | |
| dc.identifier.uri | http://hdl.handle.net/11025/34620 | |
| dc.language.iso | en | en |
| dc.publisher | Václav Skala - UNION Agency | cs |
| dc.rights | © Václav Skala - UNION Agency | en |
| dc.rights.access | openAccess | en |
| dc.subject | procesní model | cs |
| dc.subject | parametrický model | cs |
| dc.subject | parametrizace | cs |
| dc.subject | klasifikace 3D objektů | cs |
| dc.subject | hluboké učení | cs |
| dc.subject.translated | procedural model | en |
| dc.subject.translated | parametric model | en |
| dc.subject.translated | parameterization | en |
| dc.subject.translated | 3D object classification | en |
| dc.subject.translated | deep learning | en |
| dc.title | 3D object classification and parameter estimation based on parametric procedural models | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- Getto.pdf
- Size:
- 2.75 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: