Automatická klasifikace dokumentů s podobným obsahem
Date issued
2012
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Západočeská univerzita v Plzni
Abstract
Hlavním cílem práce je prozkoumat metody pro více třídní klasifikaci dokumentů a navrhnout programové řešení pro Českou tiskovou kancelář (ČTK). Více třídní klasifikace je úkol, při kterém jsou dokumenty klasifikovány do více kategorií. Na základě literatury byly vybrány tři klasifikátory, které jsou úspěšně používány v této oblasti: Naivní Bayesův klasifikátor, Support Vector Machine (SVM) a klasifikátor Maximum Entropy. Práce dále zkoumá možnost použití slovních druhů (POS-tagging) pro filtrování slov a lemmatizace pro zlepšení úspěšnosti klasifikace. Práce dále srovnává pět metod pro výběr příznaků: Dokumentová frekvence, Information Gain (IG), Chí-kvadrát test a metodu GSS. Všechny metody jsou vyhodnoceny na českém korpusu novinových článků dodaných ČTK. Na základě výsledků klasifikace je navrženo optimální nastavení klasifikátoru. Pro implementaci klasifikačních metod je použit nástroj MinorThird. Pro lemmatizaci a POS-tagging byl použit nástroj MateTool.
Description
Subject(s)
příznakové metody, lemmatizace, maximální entropie, více třídní klasifikace, naivní Bayesův klasifikátor, POS tagging, metoda podpůrných vektorů, klasifikace textu