6-DOF Pose Estimation For Event Cameras Using A Transformer-Based Approach

dc.contributor.authorTabia, Ahmed
dc.contributor.authorBonardi, Fabien
dc.contributor.authorBouchaa, Samia
dc.contributor.editorSkala, Václav
dc.date.accessioned2025-07-30T09:31:08Z
dc.date.available2025-07-30T09:31:08Z
dc.date.issued2025
dc.description.abstract-translatedEvent cameras are novel sensors that provide significant advantages over traditional cameras, such as low latency, high dynamic range, and reduced motion blur. These properties make them particularly well-suited for 6-DOF pose estimation tasks in challenging environments. In this paper, we present a novel transformer-based approach for 6-DOF pose estimation using event camera data. Our method combines a pretrained ResNet50 backbone for feature extraction with a custom transformer encoder to model the spatial and temporal dependencies inherent in event data. We demonstrate the effectiveness of our approach on a dataset of real-world event camera images, where we achieve significant improvements in pose estimation accuracy compared to state-of-the-art methods. Additionally, our method exhibits robustness to varying lighting conditions, motion blur, and sensor noise, highlighting its potential for deployment in a wide range of applications, such as robotics, autonomous vehicles, and augmented reality. Our experimental results showcase the promising capabilities of transformer-based models in leveraging the unique properties of event cameras for accurate and efficient 6-DOF pose estimation.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.doihttp://www.doi.org/10.24132/CSRN.2025-13
dc.identifier.issn2464-4617 (Print)
dc.identifier.issn2464-4625 (online)
dc.identifier.urihttp://hdl.handle.net/11025/62219
dc.language.isoenen
dc.publisherVaclav Skala - UNION Agencyen
dc.rights© Vaclav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectodhad pózy v 6Dofcs
dc.subjecthluboké učenícs
dc.subjecttransformacecs
dc.subjectkamera založená na událostechcs
dc.subject.translated6Dof pose estimationen
dc.subject.translateddeep learningen
dc.subject.translatedtransformsen
dc.subject.translatedevent based cameraen
dc.title6-DOF Pose Estimation For Event Cameras Using A Transformer-Based Approachen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
dc.type.versionpublishedVersionen
local.files.count1*
local.files.size1814584*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
B31.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: