CNN-based Game State Detection for a Foosball Table

dc.contributor.authorHagens, David
dc.contributor.authorKnaup, Jan M.
dc.contributor.authorHergenröther, Elke
dc.contributor.authorWeinmann, Andreas
dc.contributor.editorSkala, Václav
dc.date.accessioned2024-07-20T18:18:09Z
dc.date.available2024-07-20T18:18:09Z
dc.date.issued2024
dc.description.abstract-translatedThe automation of games using Deep Reinforcement Learning Strategies (DRL) is a well-known challenge in AI research. While for feature extraction in a video game typically the whole image is used, this is hardly practical for many real world games. Instead, using a smaller game state reducing the dimension of the parameter space to include essential parameters only seems to be a promising approach. In the game of Foosball, a compact and comprehensive game state description consists of the positional shifts and rotations of the figures and the position of the ball over time. In particular, velocities and accelerations can be derived from consecutive time samples of the game state. In this paper, a figure detection system to determine the game state in Foosball is presented. We capture a dataset containing the rotations of the rods which were measured using accelerometers and the positional shifts were derived using traditional Computer Vision techniques (in a laboratory setting). This dataset is utilized to train Convolutional Neural Network (CNN) based end-to-end regression models to predict the rotations and shifts of each rod. We present an evaluation of our system using different state-of-the-art CNNs as base architectures for the regression model. We show that our system is able to predict the game state with high accuracy. By providing data for both black and white teams, the presented system is intended to provide the required data for future developments of Imitation Learning techniques w.r.t. to observing human players.en
dc.format10 s.cs_CZ
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of WSCG. 2024, vol. 32, no. 1-2, p. 31-40.en
dc.identifier.doihttps://www.doi.org/10.24132/JWSCG.2024.4
dc.identifier.issn1213 – 6972
dc.identifier.issn1213 – 6980 (CD-ROM)
dc.identifier.issn1213 – 6964 (on-line)
dc.identifier.urihttp://hdl.handle.net/11025/57342
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.rights© Václav Skala - UNION Agencycs
dc.rights© Václav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectdetekce stavu hrycs
dc.subjectpočítačové viděnícs
dc.subjecthluboké učenícs
dc.subjectstolní fotbalcs
dc.subjecthluboké posílení učenícs
dc.subjectimitační učenícs
dc.subject.translatedgame state detectionen
dc.subject.translatedcomputer visionen
dc.subject.translateddeep learningen
dc.subject.translatedfoosballen
dc.subject.translateddeep reinforcement learningen
dc.subject.translatedimitation learningen
dc.titleCNN-based Game State Detection for a Foosball Tableen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersion

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
A73-2024.pdf
Size:
3.45 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: