Detect and Correct: A Selective Noise Correction Method for Learning with Noisy Labels

dc.contributor.authorGrinberg, Yuval
dc.contributor.authorHarel, Nimrod
dc.contributor.authorGoldberger, Jacob
dc.contributor.authorLindenbaum, Ofir
dc.contributor.editorSkala, Václav
dc.date.accessioned2025-07-30T09:57:10Z
dc.date.available2025-07-30T09:57:10Z
dc.date.issued2025
dc.description.abstract-translatedFalsely annotated samples, also known as noisy labels, can significantly harm the performance of deep learning models. Two main approaches for learning with noisy labels are global noise estimation and data filtering. Global noise estimation approximates the noise across the entire dataset using a noise transition matrix, but it can unnecessarily adjust correct labels, leaving room for local improvements. Data filtering, on the other hand, discards potentially noisy samples but risks losing valuable data. Our method identifies potentially noisy samples based on their loss distribution. We then apply a selection process to separate noisy and clean samples and learn a noise transition matrix to correct the loss for noisy samples while leaving the clean data unaffected, thereby improving the training process. Our approach ensures robust learning and enhanced model performance by preserving valuable information from noisy samples and refining the correction process. We applied our method to standard image datasets (MNIST, CIFAR-10, and CIFAR-100) and a biological scRNA-seq cell-type annotation dataset. We observed a significant improvement in model accuracy and robustness compared to traditional methods.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.doihttp://www.doi.org/10.24132/CSRN.2025-19
dc.identifier.issn2464-4617 (Print)
dc.identifier.issn2464-4625 (online)
dc.identifier.urihttp://hdl.handle.net/11025/62225
dc.language.isoenen
dc.publisherVaclav Skala - UNION Agencyen
dc.rights© Vaclav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectšumové značkycs
dc.subjectpřechodová maticecs
dc.subjectklasifikace obrazucs
dc.subjectsekvenování RNA jednotlivých buněkcs
dc.subjectanotace buněkcs
dc.subjectkorekce šumu značekcs
dc.subjectselektivní korekcecs
dc.subject.translatednoisy labelsen
dc.subject.translatedtransition matrixen
dc.subject.translatedimage classificationen
dc.subject.translatedsingle-cell RNA sequencingen
dc.subject.translatedcell annotationen
dc.subject.translatedlabel noise correctionen
dc.subject.translatedselective correctionen
dc.titleDetect and Correct: A Selective Noise Correction Method for Learning with Noisy Labelsen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
dc.type.versionpublishedVersionen
local.files.count1*
local.files.size1891037*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
C29.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: