Nickel-cobalt spinel-based oxygen evolution electrode for zinc-air flow battery

dc.contributor.authorRichtr, Přemysl
dc.contributor.authorHnát, Jaromír
dc.contributor.authorCharvát, Jiří
dc.contributor.authorBureš, Martin
dc.contributor.authorPocedič, Jaromír
dc.contributor.authorPaidar, Martin
dc.contributor.authorKosek, Juraj
dc.contributor.authorMazúr, Petr
dc.date.accessioned2025-09-01T06:05:56Z
dc.date.available2025-09-01T06:05:56Z
dc.date.issued2025
dc.date.updated2025-09-01T06:05:56Z
dc.description.abstractZinc-air flow battery (ZAFB) represents a candidate for safe, cheap and non-toxic stationary energy storage, however, uneven zinc deposition and low efficiency of oxygen reactions on positive electrode still obstruct its commercialization. In our contribution, we address the latter challenge by performance enhancement of electrode for oxygen evolution reaction (OER) from highly alkaline electrolyte. This was achieved by applying a NiCo 4 electro-catalytic layer onto the selected 3D nickel-based substrates via electrochemically-assisted deposition followed by calcination. The detailed physico-chemical characterization of the electrodes (specific surface area, conductivity, EDS, SEM + EDS, XRD) confirmed spinel structure of the prepared catalyst and its homogeneous deposition over the substrate. The electrochemical characterization of the electrodes was performed in three different set-ups using a complex methodology incl. voltammetry techniques, electrochemical impedance spectroscopy, galvanostatic load and charge-discharge cycling in the developed 3-electrodes 3- compartments battery full-cell. For both Ni substrates the deposited NiCo 2 O 4 catalytic layer effectively lowered the OER overpotential due to significantly enlarged specific surface area. This effect was more pronounced for the foam substrate with more compact structure. The developed ZAFB with the optimized OER electrode achieved stable and efficient performance at high current densities of 100 mA cm 2 (which is the highest reported one for cycling experiments) in a broad SoC range (0–80 %) with energy efficiency of 42.1 % and no decay of capacity utilization.en
dc.format13
dc.identifier.document-number001436672500001
dc.identifier.doi10.1016/j.est.2025.115835
dc.identifier.issn2352-152X
dc.identifier.obd43946718
dc.identifier.orcidCharvát, Jiří 0000-0002-6343-2842
dc.identifier.orcidPocedič, Jaromír 0000-0002-2183-3365
dc.identifier.orcidKosek, Juraj 0000-0002-1164-8510
dc.identifier.orcidMazúr, Petr 0000-0002-5189-517X
dc.identifier.urihttp://hdl.handle.net/11025/62777
dc.language.isoen
dc.project.IDTK02030001
dc.relation.ispartofseriesJournal of Energy Storage
dc.rights.accessA
dc.subjectoxygen evolution electrodeen
dc.subjectzinc-air flow batteryen
dc.subjectnickel-cobalt spinel catalysten
dc.subjecthybrid flow batteryen
dc.subjectmid-term stabilityen
dc.subjectgalvanostatic cyclingen
dc.titleNickel-cobalt spinel-based oxygen evolution electrode for zinc-air flow batteryen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size7455281*
local.has.filesyes*
local.identifier.eid2-s2.0-85218640868

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
CHARVAT_Nickel-cobalt spinel-based oxygen evolution electrode for zinc-air.pdf
Size:
7.11 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: