On fatigue life predictions for notched members by the nominal stress-based and the local strain-based methods

dc.contributor.authorRodriguez Duran, Jorge Alberto
dc.date.accessioned2022-07-25T05:54:22Z
dc.date.available2022-07-25T05:54:22Z
dc.date.issued2022
dc.description.abstract-translatedTraditional engineeringmodels for addressing fatigue issues are based on empirical relations between the necessary number of cycles for fatigue failures $N_f$ and either, the nominal stress $\sigma_{an}$ or the local strain $\epsilon_a$ amplitudes. The aim of the present paper is to highlight the advantages of the local strain-based approach $\epsilon N$ for fatigue assessment of notched components over the more traditional stress-based approach $\sigma N$. Since a closed form solution for the ratio between fatigue life predictions among the two methods does not exist, we have considered a hypothetical case study that included variables such as the applied stress, the stress concentration factor and the structural material, and numerically calculated the expected fatigue life according to each approach. In order to highlight the differences related with the stress-strain analysis, the applied nominal stresses (uniaxial) were limited to the elastic region where both methods use approximately the same fatigue strength curve. Additionally a unique and equal function for accounting for themean stress effects was incorporated in both approaches. Fatigue life predictions are expressed in universal graphs of normalized stress versus the $N_f-ratio$, the latter parameter defined as the quotient between the $N_f$ predictions according to the $\sigma N$ and $\epsilon N$ approaches, considering the average values for a group of sixty structural steels at each load level. The results confirm that fatigue life predictions under the traditional stress based approach are conservative when compared to the strain based approach for all the possible scenarios described by the variables involved.en
dc.format12 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationApplied and Computational Mechanics. 2022, vol. 16, no. 1, p. 23-34.en
dc.identifier.doihttps://doi.org/10.24132/acm.2022.678
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.identifier.urihttps://www.kme.zcu.cz/acm/acm/issue/view/31
dc.identifier.urihttp://hdl.handle.net/11025/49230
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.rights© University of West Bohemiaen
dc.rights.accessopenAccessen
dc.subjectpřístup založený na únavovém namáhánícs
dc.subjectkřivky deformace-životnostcs
dc.subjectelasticko-plastická analýza napětí-deformacecs
dc.subject.translatedfatigue strain-based approachen
dc.subject.translatedstrain-life curvesen
dc.subject.translatedelastic-plastic stress-strain analysisen
dc.titleOn fatigue life predictions for notched members by the nominal stress-based and the local strain-based methodsen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
678-4338-1-PB.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
OPEN License Selector