Offline Signature Verification through Probabilistic Neural Network

dc.contributor.authorYin, Ooi Shih
dc.contributor.authorJin, Andrew Teoh Beng
dc.contributor.authorYan, Hiew Bee
dc.contributor.authorHan, Pang Ying
dc.contributor.editorSkala, Václav
dc.date.accessioned2014-04-17T08:07:52Z
dc.date.available2014-04-17T08:07:52Z
dc.date.issued2010
dc.description.abstractIn this paper, we show the positive potential of verifying the offline handwritten signatures through discrete Radon transform (DRT), principle component analysis (PCA) and probabilistic neural network (PNN). Satisfactory results are obtained with 1.51%, 3.23%, and 13.07% equal error rate (EER) for random, casual, and skilled forgeries respectively on our independent database.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG 2010: Communication Papers Proceedings: 18th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS, p. 31-38.en
dc.identifier.isbn978-80-86943-87-9
dc.identifier.urihttp://wscg.zcu.cz/WSCG2010/Papers_2010/!_2010_Short-proceedings.pdf
dc.identifier.urihttp://hdl.handle.net/11025/11038
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG 2010: Communication Papers Proceedingsen
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectoffline verifikace podpisucs
dc.subjectdiskrétní Radonova transformacecs
dc.subjectanalýza hlavních komponentcs
dc.subjectpravděpodobnostní neuronové sítěcs
dc.subject.translatedoffline signature verificationen
dc.subject.translateddiscrete Radon transformen
dc.subject.translatedprinciple component analysisen
dc.subject.translatedprobabilistic neural networksen
dc.titleOffline Signature Verification through Probabilistic Neural Networken
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.driverinfo:eu-repo/semantics/conferenceObjecten
dc.type.driverinfo:eu-repo/semantics/publishedVersionen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Yin.pdf
Size:
445.17 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: