Automatické rozpoznávání znakového jazyka z obrazových dat

Date issued

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Západočeská univerzita v Plzni

Abstract

Tato práce se zabývá problematikou automatického rozpoznávání znakového jazyka z obrazových dat. Práce představuje pět hlavních přínosů v oblasti tvorby systému pro rozpoznávání, tvorby korpusů, extrakci příznaků z rukou a obličeje s využitím metod pro sledování pozice a pohybu rukou (tracking) a modelování znaků s využitím menších fonetických jednotek (sub-units). Metody využité v rozpoznávacím systému byly využity i k tvorbě vyhledávacího nástroje "search by example", který dokáže vyhledávat ve videozáznamech podle obrázku ruky. Navržený systém pro automatické rozpoznávání znakového jazyka je založen na statistickém přístupu s využitím skrytých Markovových modelů, obsahuje moduly pro analýzu video dat, modelování znaků a dekódování. Systém je schopen rozpoznávat jak izolované, tak spojité promluvy. Veškeré experimenty a vyhodnocení byly provedeny s vlastními korpusy UWB-06-SLR-A a UWB-07-SLR-P, první z nich obsahuje 25 znaků, druhý 378. Základní extrakce příznaků z video dat byla provedena na nízkoúrovňových popisech obrazu. Lepších výsledků bylo dosaženo s příznaky získaných z popisů vyšší úrovně porozumění obsahu v obraze, které využívají sledování pozice rukou a metodu pro segmentaci rukou v době překryvu s obličejem. Navíc, využitá metoda dokáže interpolovat obrazy s obličejem v době překryvu a umožňuje tak využít metody pro extrakci příznaků z obličeje, které by během překryvu nefungovaly, jako např. metoda active appearance models (AAM). Bylo porovnáno několik různých metod pro extrakci příznaků z rukou, jako např. local binary patterns (LBP), histogram of oriented gradients (HOG), vysokoúrovnové lingvistické příznaky a nové navržená metoda hand shape radial distance function (hRDF). Bylo také zkoumáno využití menších fonetických jednotek, než jsou celé znaky, tzv. sub-units. Pro první krok tvorby těchto jednotek byl navržen iterativní algoritmus, který tyto jednotky automaticky vytváří analýzou existujících dat. Bylo ukázáno, že tento koncept je vhodný pro modelování a rozpoznávání znaků. Kromě systému pro rozpoznávání je v práci navržen a představen systém "search by example", který funguje jako vyhledávací systém pro videa se záznamy znakového jazyka a může být využit například v online slovnících znakového jazyka, kde je v současné době složité či nemožné v takovýchto datech vyhledávat. Tento nástroj využívá metody, které byly použity v rozpoznávacím systému. Výstupem tohoto vyhledávacího nástroje je seřazený seznam videí, které obsahují stejný nebo podobný tvar ruky, které zadal uživatel, např. přes webkameru.

Description

Subject(s)

automatické rozpoznávání znakové řeči, strojové učení, počítačové vidění, umělá inteligence

Citation

OPEN License Selector