Sémantická segmentace v dlouhodobé vizuální lokalizaci

dc.contributor.authorBureš, Lukáš
dc.date.accepted2022-12-14
dc.date.accessioned2022-12-19T23:10:44Z
dc.date.available2018-11-19
dc.date.available2022-12-19T23:10:44Z
dc.date.issued2022
dc.date.submitted2022-3-8
dc.description.abstractTato práce má pět hlavních cílů. Nejprve mapuje datové sady používané pro dlouhodobou vizuální lokalizaci a vybere vhodné datové sady pro další vyhodnocení. Dále je vybrán a vylepšen jeden ze současných state-of-the-art přístupů. Výsledky s pečlivě vyladěnými parametry vybrané metody dosahují lepších výsledků lokalizace. Dále je ukázáno, že dynamické objekty v obrázku jsou pro dlouhodobou vizuální lokalizaci zbytečné, protože neobsahují žádnou užitečnou informaci a lze je zcela odstranit. Čtvrtým cílem této práce je pokusit se vložit sémantickou informaci do detektoru a deskriptoru klíčových bodů SuperPoint úpravou trénovacích dat. Závěrem je dosaženo nových state-of-the-art výsledků na vybrané datové sadě aplikací nového přístupu filtrování klíčových bodů založeného na sémantické informaci. Význam této práce ukazuje důležitost analýzy obrazové informace v úloze dlouhodobé vizuální lokalizace a detekce klíčových bodů obecně.cs
dc.description.abstract-translatedThis thesis has five main goals. At first, it maps the datasets used for long-term visual localization and selects viable datasets for further evaluation. Next, one of the current state-of-the-art pipelines is selected and enhanced. Results with carefully fine-tuned methods' parameters accomplish better localization results. Furthermore, it shows that dynamic objects in an image are unnecessary for long-term visual localization because they do not contain any helpful information and can be ignored. The fourth goal in this thesis is to embed semantic segmentation information into the SuperPoint keypoint detector and descriptor by editing training data. Finally, the new state-of-the-art results on a selected dataset are achieved by applying a novel keypoint filtering approach based on semantic segmentation information. The significance of this work shows the importance of analyzing underlying image information in long-term visual localization and keypoint detection in general.en
dc.description.resultObhájeno
dc.formatxxiv, 154, XIII
dc.identifier84829
dc.identifier.urihttp://hdl.handle.net/11025/50759
dc.language.isoen
dc.publisherZápadočeská univerzita v Plzni
dc.rightsPlný text práce je přístupný bez omezení
dc.subjectdlouhodobá vizuální lokalizacecs
dc.subjectvizuální příznakycs
dc.subjectvizuální klíčové bodycs
dc.subjectdetektory klíčových bodůcs
dc.subjectdeskriptory klíčových bodůcs
dc.subjectneuronové sítěcs
dc.subjectpočítačové viděnícs
dc.subjectstrojové učenícs
dc.subject.translatedlong-term visual localizationen
dc.subject.translatedvisual featuresen
dc.subject.translatedvisual keypointsen
dc.subject.translatedkeypoints detectorsen
dc.subject.translatedkeypoints descriptorsen
dc.subject.translatedneural networksen
dc.subject.translatedcomputer visionen
dc.subject.translatedmachine learningen
dc.thesis.degree-grantorZápadočeská univerzita v Plzni. Fakulta aplikovaných věd
dc.thesis.degree-levelDoktorský
dc.thesis.degree-namePh.D.
dc.thesis.degree-programAplikované vědy a informatika
dc.titleSémantická segmentace v dlouhodobé vizuální lokalizacics
dc.title.alternativeSemantic Segmentation in Long-term Visual Localizationen
dc.typedisertační práce
local.relation.IShttps://portal.zcu.cz/StagPortletsJSR168/CleanUrl?urlid=prohlizeni-prace-detail&praceIdno=84829

Files

Original bundle
Showing 1 - 4 out of 4 results
No Thumbnail Available
Name:
Lukas_Bures_dissertation_thesis.pdf
Size:
23.13 MB
Format:
Adobe Portable Document Format
Description:
Plný text práce
No Thumbnail Available
Name:
posudky-odp-bures.pdf
Size:
167.45 KB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta práce
No Thumbnail Available
Name:
protokol-odp-stag-bures.pdf
Size:
317.91 KB
Format:
Adobe Portable Document Format
Description:
Průběh obhajoby práce
No Thumbnail Available
Name:
Lukas_Bures_publications.pdf
Size:
205.41 KB
Format:
Adobe Portable Document Format
Description:
VŠKP - příloha