Neural model of synchronous generator with nonlinear magnetizing characteristic

dc.contributor.authorNocon, Adrian
dc.contributor.authorPaszek, Stefan
dc.contributor.editorUlrych, Bohuš
dc.date.accessioned2017-04-03T08:26:08Z
dc.date.available2017-04-03T08:26:08Z
dc.date.issued2007
dc.description.abstract-translatedThe paper presents the proposal of using artificial neural networks for simulation investigations of synchronous generators working as autonomous supply sources. The comparative analysis of the neural model and that based on the synchronous generator R-L parameters is performed. A three-stage hybrid algorithm consisting of genetic, Nelder-Mead and gradient algorithms was applied to learning the artificial neural network.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationAMTEE ’07 : seventh international conference on Advanced Methods in the Theory of Electrical Engineering : September 10-12, 2007 [Pilsen, Czech Republic].en
dc.identifier.isbn978-80-7043-564-9
dc.identifier.urihttp://hdl.handle.net/11025/25807
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.rights© University of West Bohemiaen
dc.rights.accessopenAccessen
dc.subjectsynchronní generátorcs
dc.subjectneurální modelcs
dc.subject.translatedsynchronous generatoren
dc.subject.translatedneural modelen
dc.titleNeural model of synchronous generator with nonlinear magnetizing characteristicen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Nocon.pdf
Size:
364.48 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: