Detecting Topologically Relevant Structures in Flows by Surface Integrals

dc.contributor.authorReich, Wieland
dc.contributor.authorKasten, Jens
dc.contributor.authorScheuermann, Gerik
dc.contributor.editorSkala, Václav
dc.date.accessioned2015-01-30T09:21:41Z
dc.date.available2015-01-30T09:21:41Z
dc.date.issued2014
dc.description.abstractGauss’ theorem, which relates the flow through a surface to the vector field inside the surface, is an important tool in Flow Visualization. We are exploit the fact that the theorem can be further refined on polygonal cells and construct a process that encodes the particle movement through the boundary facets of these cells using transition matrices. By pure power iteration of transition matrices, various topological features, such as separation and invariant sets, can be extracted without having to rely on the classical techniques, e.g., interpolation, differentiation and numerical streamline integration. We will apply our method to steady vector fields with a focus on three dimensions.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of WSCG. 2014, vol. 22, no. 1, p. 39-48.en
dc.identifier.issn1213–6972 (hardcopy)
dc.identifier.issn1213–6980 (CD-ROM)
dc.identifier.issn1213–6964 (online)
dc.identifier.urihttp://wscg.zcu.cz/WSCG2014/!!_2014-Journal-No-1.pdf
dc.identifier.urihttp://hdl.handle.net/11025/11898
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesJournal of WSCGen
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectpovrchové integrálycs
dc.subjecttopologie vektorového polecs
dc.subjectvizualizace tokucs
dc.subjectpřechodové matricecs
dc.subjectstochastické procesycs
dc.subject.translatedsurface integralsen
dc.subject.translatedvector field topologyen
dc.subject.translatedflow visualizationen
dc.subject.translatedtransition matricesen
dc.subject.translatedstochastic processesen
dc.titleDetecting Topologically Relevant Structures in Flows by Surface Integralsen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Reich.pdf
Size:
3.04 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: