Nové trendy v oblasti solárních systémů

Date issued

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Západočeská univerzita v Plzni

Abstract

V souvislosti s celosvětově rostoucí poptávkou po energiích, zmenšujícími se zásobami "tradičních" neobnovitelných zdrojů energie a rostoucím znečištěním životního prostředí nabývají v energetice stále významnějšího postavení obnovitelné zdroje energie (ve zkratce OZE), zejména oblast fotovoltaických (FV) článků. V posledních několika letech je tato v celosvětovém měřítku jedním z nejprogresivněji se rozvíjejících oborů a je pokládána za nejdůležitější technologii 21. století. Roční nárůst instalovaného výkonu FV systémů se celosvětově pohybuje okolo 30 %. Na konci roku 2012 přesáhl celkový instalovaný výkon neuvěřitelných 100 GWp, tj. 100 krát více než roku 1999. Například v roce 2008 to přitom bylo "jen" 14 GWp, z toho v Evropě 9 GWp. Důvodů pro tento stoupající trend je hned několik. Zejména se však jedná o ekologické a ekonomické hledisko. Při provozu FV elektráren nevznikají žádné emise, odpadní vody, radioaktivní látky, ani hluk. Nemusíme se ani obávat účtů za využívání sluneční energie. Příznivá je v současnosti i energetická návratnost výroby FV článků a jejich životnost. Největší nevýhodou energie Slunce je naopak, podobně jako u ostatních OZE, její silná závislost na místně-časových podmínkách, i počasí. Produkce elektrické energie z FV článků je přímo závislá na délce a intenzitě slunečního svitu, míře znečištění ovzduší, atd. Diagram výroby elektrické energie pomocí FV systémů se proto nekryje s průběhem její roční spotřeby. Nejvyšší výroba elektrické energie je v letních měsících, kdy je nejnižší spotřeba. Naopak v zimním období, kdy je spotřeba nejvyšší, je produkce minimální. Přesto lze s ohledem na již zmíněnou rostoucí poptávku po energiích předpokládat, že význam FV ve světové energetice nebude klesat. Spíše naopak. Do budoucna ji lze chápat jako technologii s neomezeným růstovým potenciálem a časově neomezenou možností výroby elektrické energie. Nejedná se však jen o zajímavou technologii, ale i o vyspělé průmyslové odvětví, které pozitivně ovlivňuje nejen obchodní aktivity, ale i zaměstnanost a kvalifikaci vědeckých pracovníků. Cestou jak udržet FV v popředí světové energetiky je a bude výzkum a vývoj nových technologií a materiálů vhodných k výrobě FV článků. V současné době se zaměřuje pozornost v této oblasti zejména na tenkovrstvé (TF) FV články, jimž se podrobněji zabývá tato práce. Její první část ve stručnosti popisuje vývoj spotřeby energií, elektromagnetické záření Slunce a jeho možné využití. Druhá část je úvodem do oblasti FV. Kromě jiného je zde objasněn princip FV jevu, krátce zmíněna historie vývoje FV článků, vysvětlena pásová teorie polovodičů a princip p-n přechodu, který tvoří základ FV článků I. generace. Největší část je věnována TF článkům III. generace, konkrétně článkům tandemovým, a to jak teorii spjaté s touto problematikou, tak především celé řadě experimentů, které byly v rámci disertační práce provedeny. Pokud jde o teoretickou část, tato obsahuje informace o principu tandemových článků p-i-n přechodu, jejich struktuře, materiálech a základních parametrech. Co se týká experimentální části, lze ji rozdělit do dvou částí. První z těchto zahrnuje přípravu křemíkových TF vrstev depoziční metodou PECVD, druhá pak analýzu 26 vlastností těchto vrstev s ohledem na jejich aplikace v oblasti tandemových FV článků. Každá z těchto dvou částí přitom obsahuje nejen celou řadu teoretických informací týkající se použitých experimentálních technik a metod, ale i stručnou charakteristiku přístrojového i softwarového vybavení, popis provedených experimentů, jejich vyhodnocení i zpracování analyzovaných dat formou grafů a tabulek. V závěru disertační práce je pak uvedeno shrnutí analyzovaných vlastností TF, zmíněny hlavní přínosy práce a nastíněny další směry ve výzkumu a vývoji tandemových článků, a to včetně důvodů pro jeho pokračování.

Description

Subject(s)

elektroenergetika, energie slunce, foton, fotovoltaický článek, tenkovrstvý materiál, p-i-n přechod, amorfní hydrogenizovaný křemík, mikrokrystalický hydrogenizovaný křemík, transparentní vodivý oxid, depozice, PECVD, spektroskopie, RTG difrakce

Citation